IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i12p6199-d570954.html
   My bibliography  Save this article

A New Method of Removing Fine Particulates Using an Electrostatic Force

Author

Listed:
  • Jaeseok Heo

    (Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang 16105, Korea
    Railway System Engineering, University of Science and Technology, Daejeon 34113, Korea)

  • Yelim Jang

    (Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang 16105, Korea
    Railway System Engineering, University of Science and Technology, Daejeon 34113, Korea)

  • Michael Versoza

    (Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang 16105, Korea
    Railway System Engineering, University of Science and Technology, Daejeon 34113, Korea)

  • Gihwan Kim

    (Engineering Team, YK Eng., Yongin 17095, Korea)

  • Duckshin Park

    (Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang 16105, Korea
    Railway System Engineering, University of Science and Technology, Daejeon 34113, Korea)

Abstract

Many studies have found that the concentration of fine particulates in the atmosphere has increased. In particular, when using the bus, the situation in which people are exposed to relatively high concentrations of fine particulates is increasing. The purpose of this study is to reduce exposure to these potentially harmful particulates by introducing open shelters at outdoor bus stops. In order to use it as an outdoor fine particulates reduction device, a brush filter using electrostatic force (EF) was used on an experimental scale and the generation of electrostatic force, according to the material, was examined. As electrostatic force was generated, the fine particulates collection performance was about 90% efficiency. In addition, it was confirmed that the efficiency of each particle size was improved by 57% through structural improvement. Finally, through experimentation, it was confirmed that the brush module can be used for about 70 days.

Suggested Citation

  • Jaeseok Heo & Yelim Jang & Michael Versoza & Gihwan Kim & Duckshin Park, 2021. "A New Method of Removing Fine Particulates Using an Electrostatic Force," IJERPH, MDPI, vol. 18(12), pages 1-10, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6199-:d:570954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/12/6199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/12/6199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le Thi Nhu Ngoc & Minjeong Kim & Vu Khac Hoang Bui & Duckshin Park & Young-Chul Lee, 2018. "Particulate Matter Exposure of Passengers at Bus Stations: A Review," IJERPH, MDPI, vol. 15(12), pages 1-20, December.
    2. Xiaoxia Zheng & Wenji Zhao & Xing Yan & Tongtong Shu & Qiulin Xiong & Fantao Chen, 2015. "Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations," IJERPH, MDPI, vol. 12(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bassam Tawabini & Mubarak Al-Enazi & Mansour A. Alghamdi & Ashraf Farahat & Ahsan M. Shemsi & Marwan Y. Al Sharif & Mamdouh I. Khoder, 2023. "Potentially Harmful Elements Associated with Dust of Mosques: Pollution Status, Sources, and Human Health Risks," IJERPH, MDPI, vol. 20(3), pages 1-30, February.
    2. Obuks A. Ejohwomu & Majeed Oladokun & Olalekan S. Oshodi & Oyegoke Teslim Bukoye & David John Edwards & Nwabueze Emekwuru & Olumide Adenuga & Adegboyega Sotunbo & Ola Uduku & Mobolanle Balogun & Rose , 2022. "The Exposure of Workers at a Busy Road Node to PM 2.5 : Occupational Risk Characterisation and Mitigation Measures," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    3. Meiqing Zhu & Lijun Wang & Yu Wang & Jie Zhou & Jie Ding & Wei Li & Yue Xin & Shisuo Fan & Zhen Wang & Yi Wang, 2018. "Biointeractions of Herbicide Atrazine with Human Serum Albumin: UV-Vis, Fluorescence and Circular Dichroism Approaches," IJERPH, MDPI, vol. 15(1), pages 1-16, January.
    4. Dejun Wan & Changlin Zhan & Guanglin Yang & Xingqi Liu & Jinsong Yang, 2016. "Preliminary Assessment of Health Risks of Potentially Toxic Elements in Settled Dust over Beijing Urban Area," IJERPH, MDPI, vol. 13(5), pages 1-15, May.
    5. Ying Zhang & Zhengdong Huang & Jiacheng Huang, 2022. "A Comparison of Particulate Exposure Levels during Taxi, Bus, and Metro Commuting among Four Chinese Megacities," IJERPH, MDPI, vol. 19(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6199-:d:570954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.