IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i12p2886-d191072.html
   My bibliography  Save this article

Particulate Matter Exposure of Passengers at Bus Stations: A Review

Author

Listed:
  • Le Thi Nhu Ngoc

    (Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea)

  • Minjeong Kim

    (Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, Gyeonggi-do 16105, Korea)

  • Vu Khac Hoang Bui

    (Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea)

  • Duckshin Park

    (Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, Gyeonggi-do 16105, Korea)

  • Young-Chul Lee

    (Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea)

Abstract

This review clarifies particulate matter (PM) pollution, including its levels, the factors affecting its distribution, and its health effects on passengers waiting at bus stations. The usual factors affecting the characteristics and composition of PM include industrial emissions and meteorological factors (temperature, humidity, wind speed, rain volume) as well as bus-station-related factors such as fuel combustion in vehicles, wear of vehicle components, cigarette smoking, and vehicle flow. Several studies have proven that bus stops can accumulate high PM levels, thereby elevating passengers’ exposure to PM while waiting at bus stations, and leading to dire health outcomes such as cardiovascular disease (CVD), respiratory effects, and diabetes. In order to accurately predict PM pollution, an artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) have been developed. ANN is a data modeling method of proven effectiveness in solving complex problems in the fields of alignment, prediction, and classification, while the ANFIS model has several advantages including non-requirement of a mathematical model, simulation of human thinking, and simple interpretation of results compared with other predictive methods.

Suggested Citation

  • Le Thi Nhu Ngoc & Minjeong Kim & Vu Khac Hoang Bui & Duckshin Park & Young-Chul Lee, 2018. "Particulate Matter Exposure of Passengers at Bus Stations: A Review," IJERPH, MDPI, vol. 15(12), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2886-:d:191072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/12/2886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/12/2886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu Bai & Jianzhou Wang & Xuejiao Ma & Haiyan Lu, 2018. "Air Pollution Forecasts: An Overview," IJERPH, MDPI, vol. 15(4), pages 1-44, April.
    2. Jinna Lu & Hongping Hu & Yanping Bai, 2014. "Radial Basis Function Neural Network Based on an Improved Exponential Decreasing Inertia Weight-Particle Swarm Optimization Algorithm for AQI Prediction," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obuks A. Ejohwomu & Majeed Oladokun & Olalekan S. Oshodi & Oyegoke Teslim Bukoye & David John Edwards & Nwabueze Emekwuru & Olumide Adenuga & Adegboyega Sotunbo & Ola Uduku & Mobolanle Balogun & Rose , 2022. "The Exposure of Workers at a Busy Road Node to PM 2.5 : Occupational Risk Characterisation and Mitigation Measures," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    2. Jaeseok Heo & Yelim Jang & Michael Versoza & Gihwan Kim & Duckshin Park, 2021. "A New Method of Removing Fine Particulates Using an Electrostatic Force," IJERPH, MDPI, vol. 18(12), pages 1-10, June.
    3. Ying Zhang & Zhengdong Huang & Jiacheng Huang, 2022. "A Comparison of Particulate Exposure Levels during Taxi, Bus, and Metro Commuting among Four Chinese Megacities," IJERPH, MDPI, vol. 19(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih‐Hsuan Wang & Chia‐Rong Chang, 2023. "Forecasting air quality index considering socioeconomic indicators and meteorological factors: A data granularity perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1261-1274, August.
    2. Shankar Subramaniam & Naveenkumar Raju & Abbas Ganesan & Nithyaprakash Rajavel & Maheswari Chenniappan & Chander Prakash & Alokesh Pramanik & Animesh Kumar Basak & Saurav Dixit, 2022. "Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review," Sustainability, MDPI, vol. 14(16), pages 1-36, August.
    3. Ying Wang & Jianzhou Wang & Hongmin Li & Hufang Yang & Zhiwu Li, 2022. "Multi‐step air quality index forecasting via data preprocessing, sequence reconstruction, and improved multi‐objective optimization algorithm," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1483-1511, November.
    4. Nikolay Rashevskiy & Natalia Sadovnikova & Tatyana Ereshchenko & Danila Parygin & Alexander Ignatyev, 2023. "Atmospheric Ecology Modeling for the Sustainable Development of the Urban Environment," Energies, MDPI, vol. 16(4), pages 1-24, February.
    5. Hone-Jay Chu & Muhammad Zeeshan Ali, 2020. "Establishment of Regional Concentration–Duration–Frequency Relationships of Air Pollution: A Case Study for PM 2.5," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    6. Emanoel L. R. Costa & Taiane Braga & Leonardo A. Dias & Édler L. de Albuquerque & Marcelo A. C. Fernandes, 2022. "Analysis of Atmospheric Pollutant Data Using Self-Organizing Maps," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    7. Ping Liu & Mengchu Xie & Jing Bian & Huishan Li & Liangliang Song, 2020. "A Hybrid PSO–SVM Model Based on Safety Risk Prediction for the Design Process in Metro Station Construction," IJERPH, MDPI, vol. 17(5), pages 1-24, March.
    8. Xinyue Mo & Lei Zhang & Huan Li & Zongxi Qu, 2019. "A Novel Air Quality Early-Warning System Based on Artificial Intelligence," IJERPH, MDPI, vol. 16(19), pages 1-25, September.
    9. Hung-Ta Wen & Jau-Huai Lu & Deng-Siang Jhang, 2021. "Features Importance Analysis of Diesel Vehicles’ NO x and CO 2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    10. Je-Liang Liou & Pei-Ing Wu, 2021. "Monetary Health Co-Benefits and GHG Emissions Reduction Benefits: Contribution from Private On-the-Road Transport," IJERPH, MDPI, vol. 18(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2886-:d:191072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.