IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i11p6114-d569724.html
   My bibliography  Save this article

Effects of Long-Term Freeze–Thaw Cycles on the Properties of Stabilized/Solidified Lead-Zinc-Cadmium Composite-Contaminated Soil

Author

Listed:
  • Zhongping Yang

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing 400045, China
    National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing University, Chongqing 400045, China)

  • Jiazhuo Chang

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing 400045, China
    National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing University, Chongqing 400045, China)

  • Yao Wang

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing 400045, China
    National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing University, Chongqing 400045, China)

  • Xuyong Li

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing 400045, China
    National Joint Engineering Research Centre for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing University, Chongqing 400045, China)

  • Shu Li

    (Chongqing Geotechnical Engineering Testing Centre Co., Ltd., Chongqing 400045, China)

Abstract

Lead, zinc, and cadmium were used to prepare a composite-contaminated soil to replicate common situations, in which soil is usually simultaneously contaminated by multiple metals. To examine the long-term durability of stabilized/solidified (S/S) contaminated soil, specimens were subjected to a series of freeze–thaw (F-T) cycles, up to ninety times (one day per cycle), prior to testing. Triaxial compression tests, soil column leaching tests, and X-ray diffraction analysis were then employed to study the mechanical properties, environmental influences, and micro-mechanisms of the S/S lead-zinc-cadmium composite-contaminated soils after long-term F-T. The results showed that triaxial compressive strength increases within three F-T cycles, then decreases before slightly increasing or stabilizing after thirty F-T cycles. The stage of decreased cohesion thus occurs between three and fourteen F-T cycles, with variation in other factors similar to that of the triaxial compressive strength. The cohesion mainly increases between three and seven cycles. The soil column leaching test showed that the permeability of soil is more than four times higher than that of soil not subject to freeze–thaw cycles after ninety F-T cycles. XRD tests further revealed that the chemical composition of S/S contaminated soil and the occurrence of each heavy metal (HM) remained unchanged under F-T treatment.

Suggested Citation

  • Zhongping Yang & Jiazhuo Chang & Yao Wang & Xuyong Li & Shu Li, 2021. "Effects of Long-Term Freeze–Thaw Cycles on the Properties of Stabilized/Solidified Lead-Zinc-Cadmium Composite-Contaminated Soil," IJERPH, MDPI, vol. 18(11), pages 1-18, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:6114-:d:569724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/11/6114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/11/6114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    2. Zhongping Yang & Yao Wang & Denghua Li & Xuyong Li & Xinrong Liu, 2020. "Influence of Freeze–Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils," IJERPH, MDPI, vol. 17(3), pages 1-20, February.
    3. Zhongping Yang & Xuyong Li & Denghua Li & Yao Wang & Xinrong Liu, 2020. "Effects of Long-Term Repeated Freeze-Thaw Cycles on the Engineering Properties of Compound Solidified/Stabilized Pb-Contaminated Soil: Deterioration Characteristics and Mechanisms," IJERPH, MDPI, vol. 17(5), pages 1-24, March.
    4. Yan-Jun Du & Ming-Li Wei & Krishna Reddy & Fei Jin, 2014. "Compressibility of cement-stabilized zinc-contaminated high plasticity clay," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 671-683, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    2. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    3. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    4. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    5. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    6. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    7. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    8. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    9. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    10. Chunli Zhou & Yuze Tang & Deyan Zhu & Zhiwei Cui, 2024. "Tracking the Carbon Emissions Using Electricity Big Data: A Case Study of the Metal Smelting Industry," Energies, MDPI, vol. 17(3), pages 1-19, January.
    11. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    12. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    13. Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    14. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    15. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    16. Zhu Liu & Zhu Deng & Philippe Ciais & Jianguang Tan & Biqing Zhu & Steven J. Davis & Robbie Andrew & Olivier Boucher & Simon Ben Arous & Pep Canadel & Xinyu Dou & Pierre Friedlingstein & Pierre Gentin, 2021. "Global Daily CO$_2$ emissions for the year 2020," Papers 2103.02526, arXiv.org.
    17. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    18. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    19. Wang, Zhen & Wei, Liyuan & Niu, Beibei & Liu, Yong & Bin, Guoshu, 2017. "Controlling embedded carbon emissions of sectors along the supply chains: A perspective of the power-of-pull approach," Applied Energy, Elsevier, vol. 206(C), pages 1544-1551.
    20. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:11:p:6114-:d:569724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.