IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15465-d1271282.html
   My bibliography  Save this article

Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China

Author

Listed:
  • Shuangzhi Li

    (Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China)

  • Xiaoling Zhang

    (Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China
    Chengdu Plain Urban Meteorology and Environment Sichuan Provincial Field Scientific Observation and Research Station, Chengdu 610225, China)

  • Zhongci Deng

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)

  • Xiaokang Liu

    (School of Economics and Management, Beihang University, Beijing 100191, China)

  • Ruoou Yang

    (Sichuan Meteorological Service Center, Chengdu 610072, China)

  • Lihao Yin

    (Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China)

Abstract

Black carbon (BC) and CO 2 emissions are the two major factors responsible for global climate change and the associated health risks. Quantifying the impact of economic activities in urban agglomerations on BC and CO 2 emissions is essential for finding a balance between climate change mitigation and pollution reduction. In this study, we utilized a city-level environmental extended multi-regional input–output model (EE-MRIO), integrated nexus strength (INS), and structural path analysis (SPA) to quantify the BC and CO 2 footprints, nexus nodes, and supply chains of 21 cities in the Sichuan urban agglomeration (SUA) from 2012 to 2017. The results revealed that approximately 70% of the BC and CO 2 footprints come from inter-city transactions, with Chengdu being the largest importing city, while the supply of other cities was greater than their consumption. The SUA has transitioned from a supply-side city cluster to a consumption-oriented city cluster in its trade with other domestic regions. The SPA analysis highlighted that the construction sector was the largest emitter of downstream BC and CO 2 , while the electricity supply, metal/nonmetallic manufacture, oil refining and coking, transportation, and extraction industry sectors were the main nexus nodes for BC and CO 2 emissions in the SUA. Notably, the reduction in BC emissions was due to decreased indirect emissions from oil refining and coking, while the decrease in CO 2 emissions was a result of reduced indirect emissions from electricity supply. This article presents, for the first time, a quantification of the heterogeneous impacts and emission supply chains of BC and CO 2 emissions from economic activities in the SUA, providing valuable insights for developing climate mitigation policies tailored to different urban clusters.

Suggested Citation

  • Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15465-:d:1271282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    2. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
    3. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    4. Owen, Anne & Scott, Kate & Barrett, John, 2018. "Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus," Applied Energy, Elsevier, vol. 210(C), pages 632-642.
    5. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    6. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    2. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    3. Li, Jianglong & Sun, Shiqiang & Sharma, Disha & Ho, Mun Sing & Liu, Hongxun, 2023. "Tracking the drivers of global greenhouse gas emissions with spillover effects in the post-financial crisis era," Energy Policy, Elsevier, vol. 174(C).
    4. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    5. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    6. Rui Huang & Klaus Hubacek & Kuishuang Feng & Xiaojie Li & Chao Zhang, 2018. "Re-Examining Embodied SO 2 and CO 2 Emissions in China," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    7. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
    8. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    9. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    10. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    12. Zoe E. Petropoulos & Oriana Ramirez-Rubio & Madeleine K. Scammell & Rebecca L. Laws & Damaris Lopez-Pilarte & Juan José Amador & Joan Ballester & Cristina O’Callaghan-Gordo & Daniel R. Brooks, 2021. "Climate Trends at a Hotspot of Chronic Kidney Disease of Unknown Causes in Nicaragua, 1973–2014," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    13. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    14. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    15. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    16. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    17. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    18. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    19. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    20. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15465-:d:1271282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.