IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2699-d345453.html
   My bibliography  Save this article

The Impact of Non-optimum Ambient Temperature on Years of Life Lost: A Multi-county Observational Study in Hunan, China

Author

Listed:
  • Ling-Shuang Lv

    (Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China)

  • Dong-Hui Jin

    (Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China)

  • Wen-Jun Ma

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Tao Liu

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Yi-Qing Xu

    (Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China)

  • Xing-E Zhang

    (Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China)

  • Chun-Liang Zhou

    (Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China)

Abstract

The ambient temperature–health relationship is of growing interest as the climate changes. Previous studies have examined the association between ambient temperature and mortality or morbidity, however, there is little literature available on the ambient temperature effects on year of life lost (YLL). Thus, we aimed to quantify the YLL attributable to non-optimum ambient temperature. We obtained data from 1 January 2013 to 31 December 2017 of 70 counties in Hunan, China. In order to combine the effects of each county, we used YLL rate as a health outcome indicator. The YLL rate was equal to the total YLL divided by the population of each county, and multiplied by 100,000. We estimated the associations between ambient temperature and YLL with a distributed lag non-linear model (DNLM) in a single county, and then pooled them in a multivariate meta-regression. The daily mean YLL rates were 22.62 y/(p·100,000), 10.14 y/(p·100,000) and 2.33 y/(p·100,000) within the study period for non-accidental, cardiovascular, and respiratory disease death. Ambient temperature was responsible for advancing a substantial fraction of YLL, with attributable fractions of 10.73% (4.36–17.09%) and 16.44% (9.09–23.79%) for non-accidental and cardiovascular disease death, respectively. However, the ambient temperature effect was not significantly for respiratory disease death, corresponding to 5.47% (−2.65–13.60%). Most of the YLL burden was caused by a cold temperature than the optimum temperature, with an overall estimate of 10.27% (4.52–16.03%) and 15.94% (8.82–23.05%) for non-accidental and cardiovascular disease death, respectively. Cold and heat temperature-related YLLs were higher in the elderly and females than the young and males. Extreme cold temperature had an effect on all age groups in different kinds of disease-caused death. This study highlights that general preventative measures could be important for moderate temperatures, whereas quick and effective measures should be provided for extreme temperatures.

Suggested Citation

  • Ling-Shuang Lv & Dong-Hui Jin & Wen-Jun Ma & Tao Liu & Yi-Qing Xu & Xing-E Zhang & Chun-Liang Zhou, 2020. "The Impact of Non-optimum Ambient Temperature on Years of Life Lost: A Multi-county Observational Study in Hunan, China," IJERPH, MDPI, vol. 17(8), pages 1-12, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2699-:d:345453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cunrui Huang & Adrian G. Barnett & Xiaoming Wang & Shilu Tong, 2012. "The impact of temperature on years of life lost in Brisbane, Australia," Nature Climate Change, Nature, vol. 2(4), pages 265-270, April.
    2. Gasparrini, Antonio, 2011. "Distributed Lag Linear and Non-Linear Models in R: The Package dlnm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i08).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun-Liang Zhou & Ling-Shuang Lv & Dong-Hui Jin & Yi-Jun Xie & Wen-Jun Ma & Jian-Xiong Hu & Chun-E Wang & Yi-Qing Xu & Xing-E Zhang & Chan Lu, 2022. "Temperature Change between Neighboring Days Contributes to Years of Life Lost per Death from Respiratory Disease: A Multicounty Analysis in Central China," IJERPH, MDPI, vol. 19(10), pages 1-10, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    2. Jiangtao Liu & Yueling Ma & Yuhong Wang & Sheng Li & Shuyu Liu & Xiaotao He & Lanyu Li & Lei Guo & Jingping Niu & Bin Luo & Kai Zhang, 2019. "The Impact of Cold and Heat on Years of Life Lost in a Northwestern Chinese City with Temperate Continental Climate," IJERPH, MDPI, vol. 16(19), pages 1-13, September.
    3. Chun-Liang Zhou & Ling-Shuang Lv & Dong-Hui Jin & Yi-Jun Xie & Wen-Jun Ma & Jian-Xiong Hu & Chun-E Wang & Yi-Qing Xu & Xing-E Zhang & Chan Lu, 2022. "Temperature Change between Neighboring Days Contributes to Years of Life Lost per Death from Respiratory Disease: A Multicounty Analysis in Central China," IJERPH, MDPI, vol. 19(10), pages 1-10, May.
    4. Martina S. Ragettli & Apolline Saucy & Benjamin Flückiger & Danielle Vienneau & Kees de Hoogh & Ana M. Vicedo-Cabrera & Christian Schindler & Martin Röösli, 2023. "Explorative Assessment of the Temperature–Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    5. Kingsley Katleho Mokoena & Crystal Jane Ethan & Yan Yu & Asenso Theophilus Quachie, 2020. "Interaction Effects of Air Pollution and Climatic Factors on Circulatory and Respiratory Mortality in Xi’an, China between 2014 and 2016," IJERPH, MDPI, vol. 17(23), pages 1-15, December.
    6. Iara da Silva & Caroline Fernanda Hei Wikuats & Elizabeth Mie Hashimoto & Leila Droprinchinski Martins, 2022. "Effects of Environmental and Socioeconomic Inequalities on Health Outcomes: A Multi-Region Time-Series Study," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    7. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    8. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    9. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    10. Yunfei Cheng & Tatiana Ermolieva & Gui-Ying Cao & Xiaoying Zheng, 2018. "Health Impacts of Exposure to Gaseous Pollutants and Particulate Matter in Beijing—A Non-Linear Analysis Based on the New Evidence," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    11. Malebo Sephule Makunyane & Hannes Rautenbach & Neville Sweijd & Joel Botai & Janine Wichmann, 2023. "Health Risks of Temperature Variability on Hospital Admissions in Cape Town, 2011–2016," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    12. Lee, Won Sang & Sohn, So Young, 2018. "Effects of standardization on the evolution of information and communications technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 308-317.
    13. Bonnie R. Joubert & Marianthi-Anna Kioumourtzoglou & Toccara Chamberlain & Hua Yun Chen & Chris Gennings & Mary E. Turyk & Marie Lynn Miranda & Thomas F. Webster & Katherine B. Ensor & David B. Dunson, 2022. "Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    14. Yao Xiao & Chengzhen Meng & Suli Huang & Yanran Duan & Gang Liu & Shuyuan Yu & Ji Peng & Jinquan Cheng & Ping Yin, 2021. "Short-Term Effect of Temperature Change on Non-Accidental Mortality in Shenzhen, China," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    15. Graczyk, Dariusz & Pińskwar, Iwona & Choryński, Adam & Stasik, Rafał, 2024. "Less power when more is needed. Climate-related current and possible future problems of the wind energy sector in Poland," Renewable Energy, Elsevier, vol. 232(C).
    16. Xerxes T. Seposo & Tran Ngoc Dang & Yasushi Honda, 2015. "Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006–2010 Using a Distributed Lag Nonlinear Model," IJERPH, MDPI, vol. 12(6), pages 1-16, June.
    17. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    18. Ghasem Toloo & Gerard FitzGerald & Peter Aitken & Kenneth Verrall & Shilu Tong, 2013. "Evaluating the effectiveness of heat warning systems: systematic review of epidemiological evidence," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(5), pages 667-681, October.
    19. Mieczysław Szyszkowicz, 2022. "Concentration–Response Functions as an Essence of the Results from Lags," IJERPH, MDPI, vol. 19(13), pages 1-11, July.
    20. Lu Wang, 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China," IJERPH, MDPI, vol. 20(3), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2699-:d:345453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.