IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2750-d1057087.html
   My bibliography  Save this article

Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China

Author

Listed:
  • Lu Wang

    (Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China)

Abstract

In the context of climate change, heat waves are a serious hazard having significant impacts on human health, especially vulnerable populations. Many studies have researched the association between extreme heat and mortality. In the context of urban planning, many studies have explored the cooling effect of green roofs, parks, urban forests and urban gardens. Nevertheless, few studies have analyzed the effect mechanism of specific ecosystem services (Ess) as mitigation measures to heat waves. This study aimed to determine the relationship among Ess, heat waves and the heat-related mortality risk of different groups by diseases, age and sex. The research was conducted in three cities in Jiangsu Province, including Nanjing, Suzhou and Yancheng. We quantified five ecosystem services, i.e., water supply service, carbon sequestration service, cooling service, biodiversity and cultural service. Based on the previous studies, we took the frequency of heat waves into account, extending the concept of the Heat Wave Magnitude Index (HWMI). A distributed lag nonlinear model (DLNM) was applied to estimate the effect of extreme heat on mortality. Then, the study used the process analysis method to explore the relationship among Ess, heat waves and heat-related mortality risks. The results indicated that (i) water supply service, carbon sequestration service, cooling service and biodiversity can reduce heat-related mortality while cultural service increases; (ii) the effects of carbon sequestration service and cultural service are stronger than other Ess; (iii) the effects of Ess on cardiorespiratory disease, stroke and chronic obstructive pulmonary disease (COPD) mortality risks are higher than others; and (iv) women and elderly heat-related mortality risks are more affected by the Ess. This study can provide a theoretical support for policy makers to mitigate heatwave events, thus limiting heat-related mortality.

Suggested Citation

  • Lu Wang, 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China," IJERPH, MDPI, vol. 20(3), pages 1-17, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2750-:d:1057087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Liu & Zhoupeng Ren & Yonghui Zhang & Baixiang Feng & Hualiang Lin & Jianpeng Xiao & Weilin Zeng & Xing Li & Zhihao Li & Shannon Rutherford & Yanjun Xu & Shao Lin & Philip C. Nasca & Yaodong Du & J, 2019. "Modification Effects of Population Expansion, Ageing, and Adaptation on Heat-Related Mortality Risks Under Different Climate Change Scenarios in Guangzhou, China," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
    2. Marando, Federica & Salvatori, Elisabetta & Sebastiani, Alessandro & Fusaro, Lina & Manes, Fausto, 2019. "Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy," Ecological Modelling, Elsevier, vol. 392(C), pages 92-102.
    3. Yanru Pu & Yuyi Wang & Peng Wang, 2022. "Driving effects of urbanization on city-level carbon dioxide emissions: from multiple perspectives of urbanization," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 26(1), pages 108-128, January.
    4. Gasparrini, Antonio, 2011. "Distributed Lag Linear and Non-Linear Models in R: The Package dlnm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i08).
    5. Peng Wang & Yifan Zhu & Ping Yu, 2022. "Assessment of Urban Flood Vulnerability Using the Integrated Framework and Process Analysis: A Case from Nanjing, China," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    6. Marvuglia, Antonino & Koppelaar, Rembrandt & Rugani, Benedetto, 2020. "The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities," Ecological Modelling, Elsevier, vol. 438(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    2. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    3. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    5. Yunfei Cheng & Tatiana Ermolieva & Gui-Ying Cao & Xiaoying Zheng, 2018. "Health Impacts of Exposure to Gaseous Pollutants and Particulate Matter in Beijing—A Non-Linear Analysis Based on the New Evidence," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    6. Xerxes T. Seposo & Tran Ngoc Dang & Yasushi Honda, 2015. "Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006–2010 Using a Distributed Lag Nonlinear Model," IJERPH, MDPI, vol. 12(6), pages 1-16, June.
    7. Enrico Gottero & Claudia Cassatella & Federica Larcher, 2021. "Planning Peri-Urban Open Spaces: Methods and Tools for Interpretation and Classification," Land, MDPI, vol. 10(8), pages 1-19, July.
    8. Shuxin Fan & Mengyuan Zhang & Yilun Li & Kun Li & Li Dong, 2021. "Impacts of Composition and Canopy Characteristics of Plant Communities on Microclimate and Airborne Particles in Beijing, China," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    9. Reza Mehdizadeh Anvigh & José Figueiredo Silva & Joaquim Macedo, 2024. "Designing Sustainable Drainage Systems as a Tool to Deal with Heavy Rainfall—Case Study of Urmia City, Iran," Sustainability, MDPI, vol. 16(17), pages 1-30, August.
    10. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    11. Theophilus I. Emeto & Oyelola A. Adegboye & Reza A. Rumi & Mahboob-Ul I. Khan & Majeed Adegboye & Wasif A. Khan & Mahmudur Rahman & Peter K. Streatfield & Kazi M. Rahman, 2020. "Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    12. Xuemei Su & Yibin Cheng & Yu Wang & Yue Liu & Na Li & Yonghong Li & Xiaoyuan Yao, 2019. "Regional Temperature-Sensitive Diseases and Attributable Fractions in China," IJERPH, MDPI, vol. 17(1), pages 1-15, December.
    13. Yannan Li & Blesson Mathew Varghese & Jingwen Liu & Peng Bi & Michael Tong, 2023. "Association between High Ambient Temperatures and Road Crashes in an Australian City with Temperate Climate: A Time-Series Study, 2012–2021," IJERPH, MDPI, vol. 20(11), pages 1-13, May.
    14. D. A. Elston & M. J. Brewer & B. Martay & A. Johnston & P. A. Henrys & J. R. Bell & R. Harrington & D. Monteith & T. M. Brereton & K. L. Boughey & J. W. Pearce-Higgins, 2017. "A New Approach to Modelling the Relationship Between Annual Population Abundance Indices and Weather Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 427-445, December.
    15. Reija Ruuhela & Otto Hyvärinen & Kirsti Jylhä, 2018. "Regional Assessment of Temperature-Related Mortality in Finland," IJERPH, MDPI, vol. 15(3), pages 1-13, February.
    16. Jiangtao Liu & Yueling Ma & Yuhong Wang & Sheng Li & Shuyu Liu & Xiaotao He & Lanyu Li & Lei Guo & Jingping Niu & Bin Luo & Kai Zhang, 2019. "The Impact of Cold and Heat on Years of Life Lost in a Northwestern Chinese City with Temperate Continental Climate," IJERPH, MDPI, vol. 16(19), pages 1-13, September.
    17. Angelo G. Solimini & Matteo Renzi, 2017. "Association between Air Pollution and Emergency Room Visits for Atrial Fibrillation," IJERPH, MDPI, vol. 14(6), pages 1-10, June.
    18. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    19. Yoo, Eun-Hye & Roberts, John E. & Suh, YongHun, 2024. "Delayed effects of air pollution on public bike-sharing system use in Seoul, South Korea: A time series analysis," Social Science & Medicine, Elsevier, vol. 352(C).
    20. Ming Chang & Xiaotong Li & Fei Li & Hesen Zhao, 2024. "Impact of Farmers’ Livelihoods on Agricultural Carbon Emission Efficiency Under the Background of Population Urbanization: Evidence from China," Agriculture, MDPI, vol. 14(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2750-:d:1057087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.