IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i5p1636-d327828.html
   My bibliography  Save this article

Rapid Loss of Tidal Flats in the Yangtze River Delta since 1974

Author

Listed:
  • Xing Li

    (School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China)

  • Xin Zhang

    (State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Chuanyin Qiu

    (School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China)

  • Yuanqiang Duan

    (School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China)

  • Shu’an Liu

    (School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China)

  • Dan Chen

    (School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China)

  • Lianpeng Zhang

    (School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China)

  • Changming Zhu

    (School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China)

Abstract

As the home to national nature reserves and a Ramsar wetland, the tidal flats of the Yangtze River Delta are of great significance for ecological security, at both the local and global scales. However, a comprehensive understanding of the spatiotemporal conditions of the tidal flats in the Yangtze River Delta remains lacking. Here, we propose using remote sensing to obtain a detailed spatiotemporal profile of the tidal flats, using all available Landsat images from 1974 to 2018 with the help of the Google Earth Engine cloud platform. In addition, reclamation data were manually extracted from time series Landsat images for the same period. We found that approximately 40.0% (34.9–43.1%) of the tidal flats in the study area have been lost since 1980, the year in which the tidal flat area was maximal. The change in the tidal flat areas was consistent with the change in the riverine sediment supply. We also found that the cumulative reclamation areas totaled 816.6 km 2 and 431.9 km 2 in the Yangtze estuary zone and along the Jiangsu coast, respectively, between 1974 and 2018. Because of reclamation, some areas (e.g., the Hengsha eastern shoal and Pudong bank), which used to be quite rich, have lost most of their tidal flats. Currently, almost 70% of the remaining tidal flats are located in the shrinking branch (North Branch) and the two National Nature Reserves (Chongming Dongtan and Jiuduansha) in the Yangtze estuary zone. Consequently, the large-scale loss of tidal flats observed was primarily associated with reduced sediment supply and land reclamation at the time scale of the study. Because increasing demand for land and rising sea levels are expected in the future, immediate steps should be taken to prevent the further deterioration of this valuable ecosystem.

Suggested Citation

  • Xing Li & Xin Zhang & Chuanyin Qiu & Yuanqiang Duan & Shu’an Liu & Dan Chen & Lianpeng Zhang & Changming Zhu, 2020. "Rapid Loss of Tidal Flats in the Yangtze River Delta since 1974," IJERPH, MDPI, vol. 17(5), pages 1-20, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1636-:d:327828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/5/1636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/5/1636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Wang & Wei Gao & Shiyuan Xu & Lizhong Yu, 2012. "Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China," Climatic Change, Springer, vol. 115(3), pages 537-558, December.
    2. Scott A. Kulp & Benjamin H. Strauss, 2019. "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Scott A. Kulp & Benjamin H. Strauss, 2019. "Author Correction: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding," Nature Communications, Nature, vol. 10(1), pages 1-2, December.
    4. Matthew L. Kirwan & J. Patrick Megonigal, 2013. "Tidal wetland stability in the face of human impacts and sea-level rise," Nature, Nature, vol. 504(7478), pages 53-60, December.
    5. Nicholas J. Murray & Stuart R. Phinn & Michael DeWitt & Renata Ferrari & Renee Johnston & Mitchell B. Lyons & Nicholas Clinton & David Thau & Richard A. Fuller, 2019. "The global distribution and trajectory of tidal flats," Nature, Nature, vol. 565(7738), pages 222-225, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luke J. Jenkins & Ivan D. Haigh & Paula Camus & Douglas Pender & Jenny Sansom & Rob Lamb & Hachem Kassem, 2023. "The temporal clustering of storm surge, wave height, and high sea level exceedances around the UK coastline," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1761-1797, January.
    2. Alberto Alesina & Marco Tabellini, 2024. "The Political Effects of Immigration: Culture or Economics?," Journal of Economic Literature, American Economic Association, vol. 62(1), pages 5-46, March.
    3. Xueyang Liu & Xiaoxing Liu, 2021. "Can Financial Development Curb Carbon Emissions? Empirical Test Based on Spatial Perspective," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    4. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    5. Stephanie A. Siehr & Minmin Sun & José Luis Aranda Nucamendi, 2022. "Blue‐green infrastructure for climate resilience and urban multifunctionality in Chinese cities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    6. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    7. Michaël Goujon & Olivier Santoni & Laurent Wagner, 2022. "The Physical Vulnerability to Climate Change Index computed at the sub-national level," Working Papers hal-03672203, HAL.
    8. Yanhui Chen & Guosheng Li & Linlin Cui & Lijuan Li & Lei He & Peipei Ma, 2022. "The Effects of Tidal Flat Reclamation on the Stability of the Coastal Area in the Jiangsu Province, China, from the Perspective of Landscape Structure," Land, MDPI, vol. 11(3), pages 1-20, March.
    9. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    10. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    11. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    12. Yong Jee KIM & Brigitte WALDORF & Juan SESMERO, 2020. "Relocation, Retreat, and the Rising Sea Level: A Simulation of Aggregate Outcomes in Escambia County, Florida," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 51, pages 31-43.
    13. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    14. Katerina Trepekli & Thomas Balstrøm & Thomas Friborg & Bjarne Fog & Albert N. Allotey & Richard Y. Kofie & Lasse Møller-Jensen, 2022. "UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 423-451, August.
    15. Arun Rana & Qinhan Zhu & Annette Detken & Karina Whalley & Christelle Castet, 2022. "Strengthening climate-resilient development and transformation in Viet Nam," Climatic Change, Springer, vol. 170(1), pages 1-23, January.
    16. Bera, Subhas & Das, Arup & Mazumder, Taraknath, 2021. "Spatial dimensions of dichotomous adaptive responses to natural hazards in coastal districts of West Bengal, India," Land Use Policy, Elsevier, vol. 108(C).
    17. Laura Bakkensen & Quynh Nguyen & Toan Phan & Paul Schuler, 2023. "Charting the Course: How Does Information about Sea Level Rise Affect the Willingness to Migrate?," Working Paper 23-09, Federal Reserve Bank of Richmond.
    18. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    19. Mohamed A. Abdelhafez & Hussam N. Mahmoud & Bruce R. Ellingwood, 2024. "Adjusting to the reality of sea level rise: reshaping coastal communities through resilience-informed adaptation," Climatic Change, Springer, vol. 177(7), pages 1-20, July.
    20. Mengmeng Cui & Filipa Ferreira & Tze Kwan Fung & José Saldanha Matos, 2021. "Tale of Two Cities: How Nature-Based Solutions Help Create Adaptive and Resilient Urban Water Management Practices in Singapore and Lisbon," Sustainability, MDPI, vol. 13(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1636-:d:327828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.