IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p971-d316494.html
   My bibliography  Save this article

Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals

Author

Listed:
  • The-Hanh Pham

    (School of Engineering, Ngee Ann Polytechnic, 535 Clementi Rd, Singapore 599489, Singapore)

  • Jahmunah Vicnesh

    (School of Engineering, Ngee Ann Polytechnic, 535 Clementi Rd, Singapore 599489, Singapore)

  • Joel Koh En Wei

    (School of Engineering, Ngee Ann Polytechnic, 535 Clementi Rd, Singapore 599489, Singapore)

  • Shu Lih Oh

    (School of Engineering, Ngee Ann Polytechnic, 535 Clementi Rd, Singapore 599489, Singapore)

  • N. Arunkumar

    (Department of Electronics and Instrumentation, SASTRA University, Thirumalaisamudram, Thanjavur 613401, India)

  • Enas. W. Abdulhay

    (Biomedical Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan)

  • Edward J. Ciaccio

    (Department of Medicine – Columbia University New York, 630 W 168th St, New York, NY 10032, USA)

  • U. Rajendra Acharya

    (School of Engineering, Ngee Ann Polytechnic, 535 Clementi Rd, Singapore 599489, Singapore
    Department of Bioinformatics and Medical Engineering, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
    International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-855, Japan)

Abstract

Autistic individuals often have difficulties expressing or controlling emotions and have poor eye contact, among other symptoms. The prevalence of autism is increasing globally, posing a need to address this concern. Current diagnostic systems have particular limitations; hence, some individuals go undiagnosed or the diagnosis is delayed. In this study, an effective autism diagnostic system using electroencephalogram (EEG) signals, which are generated from electrical activity in the brain, was developed and characterized. The pre-processed signals were converted to two-dimensional images using the higher-order spectra (HOS) bispectrum. Nonlinear features were extracted thereafter, and then reduced using locality sensitivity discriminant analysis (LSDA). Significant features were selected from the condensed feature set using Student’s t -test, and were then input to different classifiers. The probabilistic neural network (PNN) classifier achieved the highest accuracy of 98.70% with just five features. Ten-fold cross-validation was employed to evaluate the performance of the classifier. It was shown that the developed system can be useful as a decision support tool to assist healthcare professionals in diagnosing autism.

Suggested Citation

  • The-Hanh Pham & Jahmunah Vicnesh & Joel Koh En Wei & Shu Lih Oh & N. Arunkumar & Enas. W. Abdulhay & Edward J. Ciaccio & U. Rajendra Acharya, 2020. "Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals," IJERPH, MDPI, vol. 17(3), pages 1-15, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:971-:d:316494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karatzoglou, Alexandros & Meyer, David & Hornik, Kurt, 2006. "Support Vector Machines in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prabal Datta Barua & Jahmunah Vicnesh & Raj Gururajan & Shu Lih Oh & Elizabeth Palmer & Muhammad Mokhzaini Azizan & Nahrizul Adib Kadri & U. Rajendra Acharya, 2022. "Artificial Intelligence Enabled Personalised Assistive Tools to Enhance Education of Children with Neurodevelopmental Disorders—A Review," IJERPH, MDPI, vol. 19(3), pages 1-26, January.
    2. Kiah Evans & Andrew J. O. Whitehouse & Emily D’Arcy & Maya Hayden-Evans & Kerry Wallace & Rebecca Kuzminski & Rebecca Thorpe & Sonya Girdler & Benjamin Milbourn & Sven Bölte & Angela Chamberlain, 2022. "Perceived Support Needs of School-Aged Young People on the Autism Spectrum and Their Caregivers," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    3. Afshin Shoeibi & Marjane Khodatars & Navid Ghassemi & Mahboobeh Jafari & Parisa Moridian & Roohallah Alizadehsani & Maryam Panahiazar & Fahime Khozeimeh & Assef Zare & Hossein Hosseini-Nejad & Abbas K, 2021. "Epileptic Seizures Detection Using Deep Learning Techniques: A Review," IJERPH, MDPI, vol. 18(11), pages 1-33, May.
    4. Chin-Chuan Shih & Chi-Jie Lu & Gin-Den Chen & Chi-Chang Chang, 2020. "Risk Prediction for Early Chronic Kidney Disease: Results from an Adult Health Examination Program of 19,270 Individuals," IJERPH, MDPI, vol. 17(14), pages 1-11, July.
    5. Chi-Chang Chang & Chun-Chia Chen & Chalong Cheewakriangkrai & Ying Chen Chen & Shun-Fa Yang, 2021. "Risk Prediction of Second Primary Endometrial Cancer in Obese Women: A Hospital-Based Cancer Registry Study," IJERPH, MDPI, vol. 18(17), pages 1-9, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Sorino & Maria Gabriella Caruso & Giovanni Misciagna & Caterina Bonfiglio & Angelo Campanella & Antonella Mirizzi & Isabella Franco & Antonella Bianco & Claudia Buongiorno & Rosalba Liuzzi & Ann, 2020. "Selecting the best machine learning algorithm to support the diagnosis of Non-Alcoholic Fatty Liver Disease: A meta learner study," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    2. Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
    3. Na Tang & Maoxiang Yuan & Zhijun Chen & Jian Ma & Rui Sun & Yide Yang & Quanyuan He & Xiaowei Guo & Shixiong Hu & Junhua Zhou, 2023. "Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
    4. Moro Russ A. & Härdle Wolfgang K. & Schäfer Dorothea, 2017. "Company rating with support vector machines," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 55-67, June.
    5. Ana Patrícia Rocha & Hugo Miguel Pereira Choupina & Maria do Carmo Vilas-Boas & José Maria Fernandes & João Paulo Silva Cunha, 2018. "System for automatic gait analysis based on a single RGB-D camera," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-24, August.
    6. Phichhang Ou & Hengshan Wang, 2009. "Prediction of Stock Market Index Movement by Ten Data Mining Techniques," Modern Applied Science, Canadian Center of Science and Education, vol. 3(12), pages 1-28, December.
    7. Luca Longo, 2018. "Experienced mental workload, perception of usability, their interaction and impact on task performance," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-36, August.
    8. Courage Kamusoko & Jonah Gamba & Hitomi Murakami, 2014. "Mapping Woodland Cover in the Miombo Ecosystem: A Comparison of Machine Learning Classifiers," Land, MDPI, vol. 3(2), pages 1-17, June.
    9. Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P. & Botsaris, Pantelis N., 2024. "A hybrid AHP-PROMETHEE II onshore wind farms multicriteria suitability analysis using kNN and SVM regression models in northeastern Greece," Renewable Energy, Elsevier, vol. 221(C).
    10. Perthame, Emeline & Forbes, Florence & Deleforge, Antoine, 2018. "Inverse regression approach to robust nonlinear high-to-low dimensional mapping," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 1-14.
    11. Jindřich Špička, 2018. "How Do Agricultural Biogas Investments Affect Czech Farms?," Central European Business Review, Prague University of Economics and Business, vol. 2018(4), pages 34-60.
    12. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    13. Christian Bunn & Peter Läderach & Oriana Ovalle Rivera & Dieter Kirschke, 2015. "A bitter cup: climate change profile of global production of Arabica and Robusta coffee," Climatic Change, Springer, vol. 129(1), pages 89-101, March.
    14. Samia Zaoui & Clovis Foguem & Dieudonné Tchuente & Samuel Fosso-Wamba & Bernard Kamsu-Foguem, 2023. "The Viability of Supply Chains with Interpretable Learning Systems: The Case of COVID-19 Vaccine Deliveries," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 633-657, December.
    15. Akın, Melda, 2015. "A novel approach to model selection in tourism demand modeling," Tourism Management, Elsevier, vol. 48(C), pages 64-72.
    16. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
    17. Oosterlinck, Dieter & Benoit, Dries F. & Baecke, Philippe, 2020. "From one-class to two-class classification by incorporating expert knowledge: Novelty detection in human behaviour," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1011-1024.
    18. repec:cup:judgdm:v:17:y:2022:i:3:p:598-627 is not listed on IDEAS
    19. Claudio Conversano & Elise Dusseldorp, 2017. "Modeling Threshold Interaction Effects Through the Logistic Classification Trunk," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 399-426, October.
    20. Liu, Zhen Jia, 2015. "Estudo cross-country sobre os fatores determinantes da crise financeira bancária," RAE - Revista de Administração de Empresas, FGV-EAESP Escola de Administração de Empresas de São Paulo (Brazil), vol. 55(5), September.
    21. Gregory Gadzinski & Alessio Castello, 2022. "Combining white box models, black box machines and human interventions for interpretable decision strategies," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 17(3), pages 598-627, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:971-:d:316494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.