IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p163-d1566902.html
   My bibliography  Save this article

Testing the Applicability and Transferability of Data-Driven Geospatial Models for Predicting Soil Erosion in Vineyards

Author

Listed:
  • Tünde Takáts

    (Doctoral School of Earth Sciences, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
    Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Fehérvári út.132-144, 1116 Budapest, Hungary
    Institute of Cartography and Geoinformatics, Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary)

  • László Pásztor

    (Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Fehérvári út.132-144, 1116 Budapest, Hungary)

  • Mátyás Árvai

    (Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Fehérvári út.132-144, 1116 Budapest, Hungary)

  • Gáspár Albert

    (Institute of Cartography and Geoinformatics, Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary)

  • János Mészáros

    (Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Fehérvári út.132-144, 1116 Budapest, Hungary)

Abstract

Empirically based approaches, like the Universal Soil Loss Equation (USLE), are appropriate for estimating mass movement attributed to rill erosion. USLE and its associates become widespread even in spatially extended studies in spite of its original plot-level concept, as well as with certain constraints on the supply of suitable input spatial data. At the same time, there is a continuously expanding opportunity and offer for the application of remote sensing (RS) imagery together with machine learning (ML) techniques to model and monitor various environmental processes utilizing their versatile benefits. The present study focused on the applicability of data-driven geospatial models for predicting soil erosion in three vineyards in the Upper Pannon Wine Region, Central Europe, considering the seasonal variation in influencing factors. Soil loss was formerly modeled by USLE, thus providing non-observation-based reference datasets for the calibration of parcel-specific prediction models using various ML methods (Random Forest, eXtreme Gradient Boosting, Regularized Support Vector Machine with Linear Kernel), which is a well-established approach in digital soil mapping (DSM). Predictions used spatially exhaustive, auxiliary, and environmental covariables. RS data were represented by multi-temporal Sentinel-2 satellite imagery data, which were supplemented by (i) topographic covariates derived from a UAV-based digital surface model and (ii) digital primary soil property maps. In addition to spatially quantifying soil erosion, the feasibility of transferring the inferred models between nearby vineyards was tested with ambiguous outcomes. Our results indicate that ML models can feasibly replace the empirical USLE model for erosion prediction. However, further research is needed to assess model transferability even to nearby parcels.

Suggested Citation

  • Tünde Takáts & László Pásztor & Mátyás Árvai & Gáspár Albert & János Mészáros, 2025. "Testing the Applicability and Transferability of Data-Driven Geospatial Models for Predicting Soil Erosion in Vineyards," Land, MDPI, vol. 14(1), pages 1-23, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:163-:d:1566902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karatzoglou, Alexandros & Meyer, David & Hornik, Kurt, 2006. "Support Vector Machines in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i09).
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bunn & Peter Läderach & Oriana Ovalle Rivera & Dieter Kirschke, 2015. "A bitter cup: climate change profile of global production of Arabica and Robusta coffee," Climatic Change, Springer, vol. 129(1), pages 89-101, March.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    6. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    7. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    8. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    9. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    10. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    11. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    13. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    14. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    15. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    16. Paolo Sorino & Maria Gabriella Caruso & Giovanni Misciagna & Caterina Bonfiglio & Angelo Campanella & Antonella Mirizzi & Isabella Franco & Antonella Bianco & Claudia Buongiorno & Rosalba Liuzzi & Ann, 2020. "Selecting the best machine learning algorithm to support the diagnosis of Non-Alcoholic Fatty Liver Disease: A meta learner study," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    17. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    18. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    19. Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
    20. Natalia Pardo-Lorente & Anestis Gkanogiannis & Luca Cozzuto & Antoni Gañez Zapater & Lorena Espinar & Ritobrata Ghose & Jacqueline Severino & Laura García-López & Rabia Gül Aydin & Laura Martin & Mari, 2024. "Nuclear localization of MTHFD2 is required for correct mitosis progression," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:163-:d:1566902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.