IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p1009-d316894.html
   My bibliography  Save this article

Geographical Patterns of Algal Communities Associated with Different Urban Lakes in China

Author

Listed:
  • Shengnan Chen

    (Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Huiyan He

    (Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Rongrong Zong

    (Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Kaiwen Liu

    (Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Yutian Miao

    (Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Miaomiao Yan

    (Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Lei Xu

    (Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

Urban lakes play an important role in drainage and water storage, regulating urban microclimate conditions, supplying groundwater, and meeting citizens’ recreational needs. However, geographical patterns of algal communities associated with urban lakes from a large scale are still unclear. In the present work, the geographical variation of algal communities and water quality parameters in different urban lakes in China were determined. The water quality parameters were examined in the samples collected from north, central, south, and coastal economic zones in China. The results suggested that significant differences in water quality were observed among different geographical distribution of urban lakes. The highest total phosphorus (TP)(0.21 mg/L) and total nitrogen (TN) (3.84 mg/L) concentrations were found in XinHaiHu (XHH) lake, it also showed highest the nitrate nitrogen (NO 3 − -N) (0.39 mg/L),total organic carbon(TOC) (9.77 mg/L), and COD Mn (9.01 mg/L) concentrations among all samples. Environmental and geographic factors also cause large differences in algal cell concentration in different urban lakes, which ranged from 4700 × 10 4 to 247,800 × 10 4 cell/L. Through light microscopy, 6 phyla were identified, which includes Chlorophyta, Bacillariophyta, Cyanophyta, Dinophyta, Euglenophyta, and Cryptophyta. Meanwhile, the heat map with the total 63 algal community composition at the genus level profile different urban lakes community structures are clearly distinguishable. Further analyses showed that the dominant genera were Limnothrix sp., Synedra sp., Cyclotella sp., Nephrocytium sp., Melosira sp., and Scenedesmus sp. among all samples. The integrated network analysis indicated that the highly connected taxa (hub) were Fragilaria sp., Scenedesmus sp., and Stephanodiscus sp. The water quality parameters of NO 3 − -N and NH 4 + -N had significant impacts on the structural composition of the algal community. Additionally, RDA further revealed distinct algal communities in the different urban lakes, and were influenced by NO 2 − -N, Fe, and algal cell concentrations. In summary, these results demonstrate that the pattern of algal communities are highly correlated with geographic location and water quality on a large scale, and these results also give us further understanding of the complex algal communities and effectively managing eutrophication of urban lakes.

Suggested Citation

  • Shengnan Chen & Huiyan He & Rongrong Zong & Kaiwen Liu & Yutian Miao & Miaomiao Yan & Lei Xu, 2020. "Geographical Patterns of Algal Communities Associated with Different Urban Lakes in China," IJERPH, MDPI, vol. 17(3), pages 1-19, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:1009-:d:316894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/1009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/1009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hai-Han Zhang & Sheng-Nan Chen & Ting-Lin Huang & Pan-Lu Shang & Xiao Yang & Wei-Xing Ma, 2015. "Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season," IJERPH, MDPI, vol. 12(10), pages 1-13, October.
    2. Hai-Han Zhang & Sheng-Nan Chen & Ting-Lin Huang & Wei-Xing Ma & Jin-Lan Xu & Xin Sun, 2015. "Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification," IJERPH, MDPI, vol. 12(6), pages 1-13, June.
    3. Jian-Chao Shi & Ting-Lin Huang & Gang Wen & Fei Liu & Xiao-Peng Qiu & Bao-Shan Wang, 2016. "The Variation Characteristic of Sulfides and VOSc in a Source Water Reservoir and Its Control Using a Water-Lifting Aerator," IJERPH, MDPI, vol. 13(4), pages 1-13, April.
    4. José M. Montoya & Stuart L. Pimm & Ricard V. Solé, 2006. "Ecological networks and their fragility," Nature, Nature, vol. 442(7100), pages 259-264, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miaomiao Yan & Shengnan Chen & Tinglin Huang & Baoqin Li & Nan Li & Kaiwen Liu & Rongrong Zong & Yutian Miao & Xin Huang, 2020. "Community Compositions of Phytoplankton and Eukaryotes during the Mixing Periods of a Drinking Water Reservoir: Dynamics and Interactions," IJERPH, MDPI, vol. 17(4), pages 1-28, February.
    2. Sheng-Nan Chen & Pan-Lu Shang & Peng-Liang Kang & Man-Man Du, 2020. "Metabolic Functional Community Diversity of Associated Bacteria during the Degradation of Phytoplankton from a Drinking Water Reservoir," IJERPH, MDPI, vol. 17(5), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng-Nan Chen & Pan-Lu Shang & Peng-Liang Kang & Man-Man Du, 2020. "Metabolic Functional Community Diversity of Associated Bacteria during the Degradation of Phytoplankton from a Drinking Water Reservoir," IJERPH, MDPI, vol. 17(5), pages 1-12, March.
    2. Haihan Zhang & Yue Wang & Shengnan Chen & Zhenfang Zhao & Ji Feng & Zhonghui Zhang & Kuanyu Lu & Jingyu Jia, 2018. "Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi’an, China," IJERPH, MDPI, vol. 15(3), pages 1-18, March.
    3. Chunxi Liu & Jijian Lian & Haijun Wang, 2022. "Experimental Analysis of Temperature-Control Curtain Regulating Outflow Temperature in a Thermal-Stratified Reservoir," IJERPH, MDPI, vol. 19(15), pages 1-18, August.
    4. Zechen Wang & Zhenqin Shi & Jingeng Huo & Wenbo Zhu & Yanhui Yan & Na Ding, 2023. "Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China," Land, MDPI, vol. 12(8), pages 1-13, August.
    5. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    6. Huaylla, Claudia A. & Kuperman, Marcelo N. & Garibaldi, Lucas A., 2024. "Comparison of two statistical measures of complexity applied to ecological bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    7. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Zhijun Luo & Xiaofang Yang & Songkai Luo, 2024. "Land Use Simulation and Ecological Network Construction around Poyang Lake Area in China under the Goal of Sustainable Development," Sustainability, MDPI, vol. 16(18), pages 1-24, September.
    9. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2013. "Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs," Ecological Modelling, Elsevier, vol. 251(C), pages 1-8.
    11. Zhang, Yan & Wu, Tong & Song, Changsu & Hein, Lars & Shi, Faqi & Han, Mingchen & Ouyang, Zhiyun, 2022. "Influences of climate change and land use change on the interactions of ecosystem services in China’s Xijiang River Basin," Ecosystem Services, Elsevier, vol. 58(C).
    12. Jianchao Shi & Yongrui Yang & Qitao Yi & Jin Zhang & Lianxiang Wang, 2021. "Transparent Exopolymer Particles in Drinking Water Treatment—A Brief Review," IJERPH, MDPI, vol. 18(23), pages 1-11, November.
    13. Saucan, Emil & Sreejith, R.P. & Vivek-Ananth, R.P. & Jost, Jürgen & Samal, Areejit, 2019. "Discrete Ricci curvatures for directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 347-360.
    14. Wang, Jin-Liang & Wu, Huai-Ning, 2011. "Stability analysis of impulsive parabolic complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 1020-1034.
    15. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    16. Yuxiang Zhao & Zishu Liu & Baofeng Zhang & Jingjie Cai & Xiangwu Yao & Meng Zhang & Ye Deng & Baolan Hu, 2023. "Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    18. Robin Lamarche-Perrin & Sven Banisch & Eckehard Olbrich, 2016. "The Information Bottleneck Method For Optimal Prediction Of Multilevel Agent-Based Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(01n02), pages 1-45, February.
    19. Haihan Zhang & Jingyu Jia & Shengnan Chen & Tinglin Huang & Yue Wang & Zhenfang Zhao & Ji Feng & Huiyan Hao & Sulin Li & Xinxin Ma, 2018. "Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir," IJERPH, MDPI, vol. 15(2), pages 1-20, February.
    20. Marco Alberto Javarone & Daniele Marinazzo, 2018. "Dilution of Ferromagnets via a Random Graph-Based Strategy," Complexity, Hindawi, vol. 2018, pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:1009-:d:316894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.