IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i24p9587-d465922.html
   My bibliography  Save this article

Pollution Sources and Carcinogenic Risk of PAHs in PM 1 Particle Fraction in an Urban Area

Author

Listed:
  • Ivana Jakovljević

    (Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia)

  • Zdravka Sever Štrukil

    (Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia)

  • Ranka Godec

    (Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia)

  • Ivan Bešlić

    (Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia)

  • Silvije Davila

    (Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia)

  • Mario Lovrić

    (Know-Center, Inffeldgasse 13, 8010 Graz, Austria)

  • Gordana Pehnec

    (Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia)

Abstract

Airborne particles are composed of inorganic species and organic compounds. PM 1 particles, with an aerodynamic diameter smaller than 1 μm, are considered to be important in the context of adverse health effects. Many compounds bound to particulate matter, such as polycyclic aromatic hydrocarbons (PAH), are suspected to be genotoxic, mutagenic, and carcinogenic. In this study, PAHs in the PM 1 particle fraction were measured for one year (1/1/2018–31/12/2018). The measuring station was located in the northern residential part of Zagreb, the Croatian capital, close to a street with modest traffic. Significant differences were found between PAH concentrations during cold (January–March, October–December) and warm (April–September) periods of the year. In general, the mass concentrations of PAHs characteristic for car exhausts (benzo(ghi)perylene (BghiP), indeno(1,2,3-cd)pyrene (IP), and benzo(b)fluoranthene (BbF)) were higher during the whole year than concentrations of fluoranthene (Flu) and pyrene (Pyr), which originated mostly from domestic heating and biomass burning. Combustion of diesel and gasoline from vehicles was found to be one of the main PAH sources. The incremental lifetime cancer risk (ILCR) was estimated for three age groups of populations and the results were much lower than the acceptable risk level (1 × 10 −6 ). However, more than ten times higher PAH concentrations in the cold part of the year, as well as associated health risk, emphasize the need for monitoring of PAHs in PM 1 . These data represent a valuable tool in future plans and actions to control PAH sources and to improve the quality of life of urban populations.

Suggested Citation

  • Ivana Jakovljević & Zdravka Sever Štrukil & Ranka Godec & Ivan Bešlić & Silvije Davila & Mario Lovrić & Gordana Pehnec, 2020. "Pollution Sources and Carcinogenic Risk of PAHs in PM 1 Particle Fraction in an Urban Area," IJERPH, MDPI, vol. 17(24), pages 1-21, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9587-:d:465922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/24/9587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/24/9587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordana Pehnec & Ivana Jakovljević, 2018. "Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size," IJERPH, MDPI, vol. 15(11), pages 1-25, November.
    2. Grzegorz Majewski & Kamila Widziewicz & Wioletta Rogula-Kozłowska & Patrycja Rogula-Kopiec & Karolina Kociszewska & Tomasz Rozbicki & Małgorzata Majder-Łopatka & Mariusz Niemczyk, 2018. "PM Origin or Exposure Duration? Health Hazards from PM-Bound Mercury and PM-Bound PAHs among Students and Lecturers," IJERPH, MDPI, vol. 15(2), pages 1-19, February.
    3. Yunwei Liu & Ning Qin & Weigang Liang & Xing Chen & Rong Hou & Yijin Kang & Qian Guo & Suzhen Cao & Xiaoli Duan, 2020. "Polycycl. Aromatic Hydrocarbon Exposure of Children in Typical Household Coal Combustion Environments: Seasonal Variations, Sources, and Carcinogenic Risks," IJERPH, MDPI, vol. 17(18), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrycja Siudek, 2023. "Summertime Characteristics of Atmospheric Polycyclic Aromatic Hydrocarbons in a Coastal City of Northern Poland," IJERPH, MDPI, vol. 20(5), pages 1-11, March.
    2. Mario Lovrić & Mario Antunović & Iva Šunić & Matej Vuković & Simonas Kecorius & Mark Kröll & Ivan Bešlić & Ranka Godec & Gordana Pehnec & Bernhard C. Geiger & Stuart K. Grange & Iva Šimić, 2022. "Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia," IJERPH, MDPI, vol. 19(11), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrycja Rogula-Kopiec & Wioletta Rogula-Kozłowska & Grzegorz Majewski, 2022. "Particulate Matter Concentration in Selected Facilities as an Indicator of Exposure to Their Service Activities," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    2. Ivana Jakovljević & Marija Dvoršćak & Karla Jagić & Darija Klinčić, 2022. "Polycyclic Aromatic Hydrocarbons in Indoor Dust in Croatia: Levels, Sources, and Human Health Risks," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
    3. Dorota Kaleta & Barbara Kozielska, 2022. "Spatial and Temporal Volatility of PM2.5, PM10 and PM10-Bound B[a]P Concentrations and Assessment of the Exposure of the Population of Silesia in 2018–2021," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    4. Mario Lovrić & Mario Antunović & Iva Šunić & Matej Vuković & Simonas Kecorius & Mark Kröll & Ivan Bešlić & Ranka Godec & Gordana Pehnec & Bernhard C. Geiger & Stuart K. Grange & Iva Šimić, 2022. "Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia," IJERPH, MDPI, vol. 19(11), pages 1-16, June.
    5. Tun Z. Maung & Jack E. Bishop & Eleanor Holt & Alice M. Turner & Christian Pfrang, 2022. "Indoor Air Pollution and the Health of Vulnerable Groups: A Systematic Review Focused on Particulate Matter (PM), Volatile Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Ex," IJERPH, MDPI, vol. 19(14), pages 1-24, July.
    6. Gordana Pehnec & Ivana Jakovljević, 2018. "Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size," IJERPH, MDPI, vol. 15(11), pages 1-25, November.
    7. Halina Pyta & Kamila Widziewicz-Rzońca & Krzysztof Słaby, 2020. "Inhalation Exposure to Gaseous and Particulate Bound Mercury Present in the Ambient Air over the Polluted Area of Southern Poland," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
    8. Nor Ashikin Sopian & Juliana Jalaludin & Suhaili Abu Bakar & Titi Rahmawati Hamedon & Mohd Talib Latif, 2021. "Exposure to Particulate PAHs on Potential Genotoxicity and Cancer Risk among School Children Living Near the Petrochemical Industry," IJERPH, MDPI, vol. 18(5), pages 1-20, March.
    9. Hao Zhang & Xuan Zhang & Yan Wang & Pengchu Bai & Kazuichi Hayakawa & Lulu Zhang & Ning Tang, 2022. "Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
    10. Elena Cristina Rada & Gianni Andreottola & Irina Aura Istrate & Paolo Viotti & Fabio Conti & Elena Romenovna Magaril, 2019. "Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT," IJERPH, MDPI, vol. 16(17), pages 1-11, August.
    11. Ning Qin & Ayibota Tuerxunbieke & Qin Wang & Xing Chen & Rong Hou & Xiangyu Xu & Yunwei Liu & Dongqun Xu & Shu Tao & Xiaoli Duan, 2021. "Key Factors for Improving the Carcinogenic Risk Assessment of PAH Inhalation Exposure by Monte Carlo Simulation," IJERPH, MDPI, vol. 18(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9587-:d:465922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.