IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i1p333-d304820.html
   My bibliography  Save this article

Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation

Author

Listed:
  • Shihong Yang

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    College of Agricultural Engineering, Hohai University, Nanjing 210098, China
    Cooperative Innovation Center for Water Safety & Hydro Science, Hohai University, Nanjing 210098, China)

  • Xi Chen

    (College of Agricultural Engineering, Hohai University, Nanjing 210098, China)

  • Zewei Jiang

    (College of Agricultural Engineering, Hohai University, Nanjing 210098, China)

  • Jie Ding

    (College of Agricultural Engineering, Hohai University, Nanjing 210098, China)

  • Xiao Sun

    (College of Agricultural Engineering, Hohai University, Nanjing 210098, China)

  • Junzeng Xu

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    College of Agricultural Engineering, Hohai University, Nanjing 210098, China)

Abstract

Rice water-saving irrigation technology can remarkably reduce irrigation water input and maintain high yield; however, this technology can also accelerate the decomposition of soil organic matter in paddy fields. The spatial and temporal distributions of soil organic carbon (SOC), water-soluble organic carbon (WSOC), and soil microbial biomass carbon (SMBC) under different water-carbon regulation scenarios were analyzed on the basis of field experiments in the Taihu Lake region in China to explore the effects of biochar application on SOC and its components in water-saving irrigation paddy fields. The response of soil catalase (CAT) and invertase (INV) to biochar application in water-saving irrigated rice fields was clarified. The results showed that water-saving irrigation reduced the SOC content by 5.7% to 13.3% but increased WSOC and SMBC contents by 13.8% to 26.1% and 0.9% to 11.1%, respectively, as compared with flooding irrigation. Nonflooding management promoted the oxidative decomposition of soil organic matter. Two years after straw biochar was added, paddy soil SOC content under water-saving irrigation was increased by 4.0% to 26.7%. The WSOC and SMBC contents were also increased by 4.0% to 52.4% and 7.0% to 40.8%, respectively. The high straw biochar addition rate exhibited great impact on SOC. Remarkable correlations among SOC, WSOC, and SMBC were observed, indicating that the addition of straw biochar improved soil labile C, such as WSOC and SMBC, which promoted SOC transformation and stability in paddy soil under water-saving irrigation. Soil CAT and INV were related to SOC conversion. In conclusion, the combination of water-saving irrigation and straw biochar addition was beneficial to the improvement of soil properties and fertility of paddy fields.

Suggested Citation

  • Shihong Yang & Xi Chen & Zewei Jiang & Jie Ding & Xiao Sun & Junzeng Xu, 2020. "Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation," IJERPH, MDPI, vol. 17(1), pages 1-17, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:1:p:333-:d:304820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/1/333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/1/333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanan Xiao & Shihong Yang & Junzeng Xu & Jie Ding & Xiao Sun & Zewei Jiang, 2018. "Effect of Biochar Amendment on Methane Emissions from Paddy Field under Water-Saving Irrigation," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
    2. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Xie & Feng Liang & Junjie Xie & Guanjie Jiang & Xinping Zhang & Qin Zhang, 2022. "Yield Variation Characteristics of Red Paddy Soil under Long-Term Green Manure Cultivation and Its Influencing Factors," IJERPH, MDPI, vol. 19(5), pages 1-10, February.
    2. Xiaodong Wang & Yang Xiao & Xinrui Luo & Chenyu Ye & Yuzhuo Chen & Jincheng Xiang & Ningfei Lei & Ci Song & Xiangjun Pei & Xiaolu Tang, 2023. "Short-Term Effects of Tunnel Construction on Soil Organic Carbon and Enzyme Activity in Shrublands in Eastern Tibet Plateau," Sustainability, MDPI, vol. 15(6), pages 1-12, March.
    3. Sajjad Nasiri & Babak Andalibi & Afshin Tavakoli & Mohammad Amir Delavar & Ali El-Keblawy & Lukas Van Zwieten & Andrea Mastinu, 2023. "The Mineral Biochar Alters the Biochemical and Microbial Properties of the Soil and the Grain Yield of Hordeum vulgare L. under Drought Stress," Land, MDPI, vol. 12(3), pages 1-15, February.
    4. Yuxin Zhang & Wenqi Ma & Xia Sun & Jingbailun Jiang & Dianpeng Li & Guangmu Tang & Wanli Xu & Hongtao Jia, 2023. "Biochar Aged for Five Years Altered Carbon Fractions and Enzyme Activities of Sandy Soil," Land, MDPI, vol. 12(8), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Radheshyam Yadav & Wusirika Ramakrishna, 2023. "Biochar as an Environment-Friendly Alternative for Multiple Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    3. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    4. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    5. Lybbert, Travis & Sumner, Daniel, 2010. "Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion," Climate Change 320104, International Centre for Trade and Sustainable Development (ICTSD).
    6. Ana Castro & Nilcileny Da Silva Batista & Agnieszka E. Latawiec & Aline Rodrigues & Bernardo Strassburg & Daniel Silva & Ednaldo Araujo & Luiz Fernando D. De Moraes & Jose Guilherme Guerra & Gabriel G, 2018. "The Effects of Gliricidia -Derived Biochar on Sequential Maize and Bean Farming," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    7. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    9. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    10. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    11. Adam O’Toole & Christophe Moni & Simon Weldon & Anne Schols & Monique Carnol & Bernard Bosman & Daniel P. Rasse, 2018. "Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway," Agriculture, MDPI, vol. 8(11), pages 1-19, October.
    12. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    13. Haihong Song & Jianming Wang & Ankit Garg & Xuankai Lin & Qian Zheng & Susmita Sharma, 2019. "Potential of Novel Biochars Produced from Invasive Aquatic Species Outside Food Chain in Removing Ammonium Nitrogen: Comparison with Conventional Biochars and Clinoptilolite," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    14. Duku, Moses Hensley & Gu, Sai & Hagan, Essel Ben, 2011. "Biochar production potential in Ghana—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3539-3551.
    15. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    16. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    17. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    18. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    19. Eugene Balashov & Natalya Buchkina & Vladimír Šimanský & Ján Horák, 2022. "Effects of Slow Pyrolysis Biochar on CO 2 Emissions from Two Soils under Anaerobic Conditions," Agriculture, MDPI, vol. 12(7), pages 1-12, July.
    20. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:1:p:333-:d:304820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.