IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i18p6537-d410544.html
   My bibliography  Save this article

A Perspective on Inhabited Urban Space: Land Use and Occupation, Heat Islands, and Precarious Urbanization as Determinants of Territorial Receptivity to Dengue in the City of Rio De Janeiro

Author

Listed:
  • Jefferson Pereira Caldas Santos

    (Centro de Inovação em Biodiversidade e Saúde, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro 22775-903, Brazil)

  • Nildimar Alves Honório

    (Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
    Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Fundaҫão Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil)

  • Christovam Barcellos

    (Instituto de Comunicação e Informação Científica e Tecnológica em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil)

  • Aline Araújo Nobre

    (Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil)

Abstract

Introduction: Rio de Janeiro is the second-largest city in Brazil, with strong socio-spatial segregation, and diverse and heterogeneous land use, occupation, and landscapes. The complexity of dengue requires the construction of surveillance and control tools that take into account the historical, social, economic, and environmental processes mediated in the territory as a central axis of public policy. In this context, this study aimed to stratify the city into areas of receptivity to dengue, using innovative “territorial indicators” because they are built based on the actual occupation of the territory. Methods: We designed and constructed 17 indicators that sought to characterize the transformed and inhabited space according to receptivity to dengue. We used data on land use and occupation, connectivity, climate, and landscape. We developed the dengue receptivity through principal component analysis (PCA), using multiple criteria analysis and map algebra integrated in a GIS platform. Results: The most receptive areas were concentrated in the transition between the north and west zones of the city, a region of unconsolidated urban sprawl. The areas of greatest receptivity had the highest incidence and density of Aedes eggs during the study period. The correlation between receptivity index and incidence rate was positive in the epidemic years. Conclusion: The proposed set of indicators was able to identify areas of greater receptivity, such as regions of disorderly urban sprawl, with a concentration of social and environmental processes that are related to the occurrence of dengue outbreaks and high vector density. On the other hand, population immunity plays an important role in the spatial distribution of dengue during non-epidemic years.

Suggested Citation

  • Jefferson Pereira Caldas Santos & Nildimar Alves Honório & Christovam Barcellos & Aline Araújo Nobre, 2020. "A Perspective on Inhabited Urban Space: Land Use and Occupation, Heat Islands, and Precarious Urbanization as Determinants of Territorial Receptivity to Dengue in the City of Rio De Janeiro," IJERPH, MDPI, vol. 17(18), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6537-:d:410544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/18/6537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/18/6537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Rachel Lowe & Christovam Barcellos & Patrícia Brasil & Oswaldo G. Cruz & Nildimar Alves Honório & Hannah Kuper & Marilia Sá Carvalho, 2018. "The Zika Virus Epidemic in Brazil: From Discovery to Future Implications," IJERPH, MDPI, vol. 15(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    2. Eloise B. Skinner & Caroline K. Glidden & Andrew J. MacDonald & Erin A. Mordecai, 2023. "Human footprint is associated with shifts in the assemblages of major vector-borne diseases," Nature Sustainability, Nature, vol. 6(6), pages 652-661, June.
    3. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    4. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    7. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    9. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    10. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    11. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    12. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    13. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    14. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    15. Maria-Lucia C. Lage & Alessandra L. de Carvalho & Paloma A. Ventura & Tania B. Taguchi & Adriana S. Fernandes & Suely F. Pinho & Onildo T. Santos-Junior & Clara L. Ramos & Cristiana M. Nascimento-Carv, 2019. "Clinical, Neuroimaging, and Neurophysiological Findings in Children with Microcephaly Related to Congenital Zika Virus Infection," IJERPH, MDPI, vol. 16(3), pages 1-9, January.
    16. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    17. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    18. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    19. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    20. Emma Taylor-Salmon & Verity Hill & Lauren M. Paul & Robert T. Koch & Mallery I. Breban & Chrispin Chaguza & Afeez Sodeinde & Joshua L. Warren & Sylvia Bunch & Natalia Cano & Marshall Cone & Sarah Eyso, 2024. "Travel surveillance uncovers dengue virus dynamics and introductions in the Caribbean," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6537-:d:410544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.