IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i14p5015-d383648.html
   My bibliography  Save this article

Spatiotemporal Patterns in River Water Quality and Pollution Source Apportionment in the Arid Beichuan River Basin of Northwestern China Using Positive Matrix Factorization Receptor Modeling Techniques

Author

Listed:
  • Lele Xiao

    (College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Qianqian Zhang

    (Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China)

  • Chao Niu

    (College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Huiwei Wang

    (Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China)

Abstract

Deteriorating surface water quality has become an important environmental problem in China. In this study, river water quality was monitored in July (wet season) and October (dry season) 2019 at 26 sites, and a water quality index (WQI) and positive matrix factorization (PMF) model were used to assess surface water quality and identify pollution sources in the Beichuan River basin, Qinghai Province, China. The results showed that 53.85% and 76.92% of TN, 11.54% and 34.62% of TP, 65.38% and 76.92% of Fe, and 11.54% and 15.38% of Mn samples in the dry and wet seasons, respectively, exceeded the Chinese Government’s Grade III standards for surface water quality. The spatial variation in water quality showed that it gradually deteriorated from upstream to downstream as a result of human activity. The temporal variation showed that water quality was poorer in the wet season than in the dry season because of the rainfall runoff effect. The PMF model outputs showed that the primary sources of pollution in the wet season were mineral weathering and organic pollution sources, domestic and industrial sewage, and agricultural and urban non-point pollution sources. However, in the dry season, the primary sources were mineral weathering and organic pollution sources, industrial sewage, and domestic sewage. Our results suggest that the point pollution sources (domestic and industrial sewage) should be more strictly controlled, as a priority, in order to prevent the continued deterioration in water quality.

Suggested Citation

  • Lele Xiao & Qianqian Zhang & Chao Niu & Huiwei Wang, 2020. "Spatiotemporal Patterns in River Water Quality and Pollution Source Apportionment in the Arid Beichuan River Basin of Northwestern China Using Positive Matrix Factorization Receptor Modeling Technique," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:5015-:d:383648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/14/5015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/14/5015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qianqian Zhang & Long Wang & Huiwei Wang & Xi Zhu & Lijun Wang, 2020. "Spatio-Temporal Variation of Groundwater Quality and Source Apportionment Using Multivariate Statistical Techniques for the Hutuo River Alluvial-Pluvial Fan, China," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    2. Rabia Koklu & Bulent Sengorur & Bayram Topal, 2010. "Water Quality Assessment Using Multivariate Statistical Methods—A Case Study: Melen River System (Turkey)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 959-978, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Zhou & Huiwei Wang & Qianqian Zhang, 2021. "Assessment of the Evolution of Groundwater Chemistry and Its Controlling Factors in the Huangshui River Basin of Northwestern China, Using Hydrochemistry and Multivariate Statistical Techniques," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    2. Lele Xiao & Fan Li & Chao Niu & Gelian Dai & Qian Qiao & Chengsen Lin, 2022. "Evaluation of Water Inrush Hazard in Coal Seam Roof Based on the AHP-CRITIC Composite Weighted Method," Energies, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soumaya Hajji & Nabila Allouche & Salem Bouri & Awad M. Aljuaid & Wafik Hachicha, 2021. "Assessment of Seawater Intrusion in Coastal Aquifers Using Multivariate Statistical Analyses and Hydrochemical Facies Evolution-Based Model," IJERPH, MDPI, vol. 19(1), pages 1-18, December.
    2. Xiaoliang Meng & Chao Xu & Xinxia Liu & Junming Bai & Wenhan Zheng & Hao Chang & Zhuo Chen, 2018. "An Ontology-Underpinned Emergency Response System for Water Pollution Accidents," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    3. Bing Zhou & Huiwei Wang & Qianqian Zhang, 2021. "Assessment of the Evolution of Groundwater Chemistry and Its Controlling Factors in the Huangshui River Basin of Northwestern China, Using Hydrochemistry and Multivariate Statistical Techniques," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    4. Chaobin Ren & Qianqian Zhang & Huiwei Wang & Yan Wang, 2021. "Identification of Sources and Transformations of Nitrate in the Intense Human Activity Region of North China Using a Multi-Isotope and Bayesian Model," IJERPH, MDPI, vol. 18(16), pages 1-16, August.
    5. Lei Wan & Xiaohui Fan, 2018. "Water Quality of Inflows to the Everglades National Park over Three Decades (1985–2014) Analyzed by Multivariate Statistical Methods," IJERPH, MDPI, vol. 15(9), pages 1-12, August.
    6. Jian Sha & Zeli Li & Dennis Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    7. Lazhar Belkhiri & Tahoora Narany, 2015. "Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2073-2089, April.
    8. Fabiana Liar Agudo & Bárbara Stolte Bezerra & José Alcides Gobbo Júnior, 2024. "An overview of Brazilian companies' readiness to implement industrial symbiosis," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1066-1080, February.
    9. Yuankun Wang & Dong Sheng & Dong Wang & Huiqun Ma & Jichun Wu & Feng Xu, 2014. "Variable Fuzzy Set Theory to Assess Water Quality of the Meiliang Bay in Taihu Lake Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 867-880, February.
    10. Ana Gomes & José Pires & Sónia Figueiredo & Rui Boaventura, 2014. "Optimization of River Water Quality Surveys by Multivariate Analysis of Physicochemical, Bacteriological and Ecotoxicological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1345-1361, March.
    11. Luis Alberto Alcolea-Rubio & Ana Vanessa Caparrós-Ríos & Virginia Robles-Arenas & Cristóbal García-García & Gregorio García & Rocío Millán & Araceli Pérez-Sanz & Roberto Rodríguez-Pacheco, 2022. "Environmental Implications of Saline Efflorescence Associated with Metallic Mining Waste in a Mediterranean Region," Land, MDPI, vol. 12(1), pages 1-24, December.
    12. Jian Sha & Zeli Li & Dennis P. Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    13. Zhi Tu & Yinzhu Zhou & Jinlong Zhou & Shuangbao Han & Jinwei Liu & Jiangtao Liu & Ying Sun & Fangyuan Yang, 2023. "Identification and Risk Assessment of Priority Control Organic Pollutants in Groundwater in the Junggar Basin in Xinjiang, P.R. China," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    14. Luke Mosley & Benjamin Zammit & Emily Leyden & Theresa Heneker & Matthew Hipsey & Dominic Skinner & Kane Aldridge, 2012. "The Impact of Extreme Low Flows on the Water Quality of the Lower Murray River and Lakes (South Australia)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3923-3946, October.
    15. Jeremy Dominic & Ahmad Aris & Wan Sulaiman, 2015. "Factors Controlling the Suspended Sediment Yield During Rainfall Events of Dry and Wet Weather Conditions in A Tropical Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4519-4538, September.
    16. Honglei Chen & Junbo Yang & Xiaohua Fu & Qingxing Zheng & Xinyu Song & Zeding Fu & Jiacheng Wang & Yingqi Liang & Hailong Yin & Zhiming Liu & Jie Jiang & He Wang & Xinxin Yang, 2022. "Water Quality Prediction Based on LSTM and Attention Mechanism: A Case Study of the Burnett River, Australia," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    17. Ayman Awadallah & Mohsen Yousry, 2012. "Identifying Homogeneous Water Quality Regions in the Nile River Using Multivariate Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2039-2055, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:5015-:d:383648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.