IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i12p4572-d376120.html
   My bibliography  Save this article

Response of Vegetation and Soil Characteristics to Grazing Disturbance in Mountain Meadows and Temperate Typical Steppe in the Arid Regions of Central Asian, Xinjiang

Author

Listed:
  • Xu Bi

    (College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China
    Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Bo Li

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Xiangchao Xu

    (Institute of Science & Technology Information of Shanxi, Taiyuan 030024, China)

  • Lixin Zhang

    (College of Urban and Environmental Science, Peking University, Beijing 100871, China)

Abstract

Grazing is one of the most common causes of grassland degradation, therefore, an assessment of soil physicochemical properties and plant nutrients under grazing is important for understanding its influences on ecosystem nutrient cycling and for formulating appropriate management strategies. However, the effects of grazing on grassland soil physicochemical properties and plant nutrients in mountain meadow and temperate typical steppe in the arid regions are still unclear. Therefore, we investigated the vegetation nutrient concentrations of nitrogen, phosphorus and potassium (N, P, and K) as well as soil physicochemical properties in the topmost 40 cm depth soil, to evaluate how these factors respond to grazing disturbance in a mountain meadow and temperate typical steppe within a mountain basin system in arid regions. Our results revealed that the soil bulk density values at depth of 0–40 cm increased after grazing in the mountain meadow and temperate typical steppe, whereas the soil water content decreased in the mountain meadow and increased in the temperate typical steppe after grazing. In the mountain meadow, soil total N and available P in addition to vegetation N and P concentrations increased in response to high-intensity grazing, while soil available N, available K and vegetation K decreased after grazing; in addition, soil pH, soil total P and K showed no significant changes. In the temperate typical steppe, the soil total P, soil available N, P, and K, and vegetation N, P, and K increased under relatively low-intensity grazing, whereas soil pH and soil total K showed no significant changes except for the deceasing soil total N. Our findings showed the different responses of different grassland ecosystems to grazing. Moreover, we propose that further related studies are necessary to better understand the effects of grazing on grassland ecosystems, and thereby provide a theoretical basis for the sustainable use of animal husbandry and ecological restoration of grasslands.

Suggested Citation

  • Xu Bi & Bo Li & Xiangchao Xu & Lixin Zhang, 2020. "Response of Vegetation and Soil Characteristics to Grazing Disturbance in Mountain Meadows and Temperate Typical Steppe in the Arid Regions of Central Asian, Xinjiang," IJERPH, MDPI, vol. 17(12), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4572-:d:376120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/12/4572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/12/4572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Li & Zhi Zhang & Linlu Shi & Yan Zhou & Meng Yang & Jiaxi Cao & Shuhong Wu & Guangchun Lei, 2018. "Effects of Different Grazing Intensities on Soil C, N, and P in an Alpine Meadow on the Qinghai—Tibetan Plateau, China," IJERPH, MDPI, vol. 15(11), pages 1-16, November.
    2. Yunqing Hao & Zhengwei He, 2019. "Effects of grazing patterns on grassland biomass and soil environments in China: A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-15, April.
    3. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lianlian Fan & Yuanye Liang & Xiaofeng Li & Jiefei Mao & Guangyu Wang & Xuexi Ma & Yaoming Li, 2023. "Grazing Decreases Soil Aggregation and Has Different Effects on Soil Organic Carbon Storage across Different Grassland Types in Northern Xinjiang, China," Land, MDPI, vol. 12(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jieming Chou & Yidan Hao & Yuan Xu & Weixing Zhao & Yuanmeng Li & Haofeng Jin, 2023. "Forest Carbon Sequestration Potential in China under Different SSP-RCP Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-12, April.
    2. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    3. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    4. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    5. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    6. Jin, Ming & Han, Xulong & Li, Mingyu, 2023. "Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area," Ecological Modelling, Elsevier, vol. 482(C).
    7. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    8. Myrgiotis, Vasileios & Blei, Emanuel & Clement, Rob & Jones, Stephanie K. & Keane, Ben & Lee, Mark A. & Levy, Peter E. & Rees, Robert M. & Skiba, Ute M. & Smallman, Thomas Luke & Toet, Sylvia & Willia, 2020. "A model-data fusion approach to analyse carbon dynamics in managed grasslands," Agricultural Systems, Elsevier, vol. 184(C).
    9. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    10. Youngsu Park & Yujun Sun, 2018. "Sustainable Forest Management in North-East Asia: A Comparative Assessment between China and Republic of Korea," International Journal of Sciences, Office ijSciences, vol. 7(04), pages 102-114, April.
    11. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    12. Mingjie Tian & Zhun Chen & Wei Wang & Taizheng Chen & Haiying Cui, 2022. "Land-Use Carbon Emissions in the Yellow River Basin from 2000 to 2020: Spatio-Temporal Patterns and Driving Mechanisms," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    13. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    14. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    15. Zhencheng Xing & Yanyan Ma & Lan Luo & Haikun Wang, 2024. "Harmonizing economies and ecologies: Towards an equitable provincial carbon quota allocation for China’s peak emissions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    16. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    17. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    18. Zhilu Sheng & Jiaqiang Du & Bingqing Sun & Jialin Mao & Yangchengsi Zhang & Jing Zhang & Zhaoyan Diao, 2022. "The Role of Plant Functional Diversity in Regulating Soil Organic Carbon Stocks under Different Grazing Intensities in Temperate Grassland, China," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    19. Lijuan Miao & Feng Zhu & Zhanli Sun & John C. Moore & Xuefeng Cui, 2016. "China’s Land-Use Changes during the Past 300 Years: A Historical Perspective," IJERPH, MDPI, vol. 13(9), pages 1-16, August.
    20. Jian Ni, 2013. "Carbon storage in Chinese terrestrial ecosystems: approaching a more accurate estimate," Climatic Change, Springer, vol. 119(3), pages 905-917, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4572-:d:376120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.