IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i8p1575-d1213768.html
   My bibliography  Save this article

Grazing Decreases Soil Aggregation and Has Different Effects on Soil Organic Carbon Storage across Different Grassland Types in Northern Xinjiang, China

Author

Listed:
  • Lianlian Fan

    (State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yuanye Liang

    (State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaofeng Li

    (Forestry and Grassland Workstation of Barkol County in Xinjiang, Barkol 839200, China)

  • Jiefei Mao

    (State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Guangyu Wang

    (State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xuexi Ma

    (State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China)

  • Yaoming Li

    (State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Soil aggregates, as the basic component of soil, make great contributions to the stability of soil structure and soil carbon (C) sequestration. Recently, grasslands have been experiencing continuous grazing, which has had a significant impact on soil aggregation and soil C storage. However, how soil aggregates and soil C in different grasslands respond to grazing remains unclear. Therefore, three national fenced grassland-monitoring sites that represented mountain meadow (MM), temperate steppe (TS), and temperate steppe desert (TSD) were selected to investigate the differences in the responses of soil aggregates and soil C among grazing of different types of grasslands. Soil samples of 0–10 cm was collected from both inside and outside the fence of each site to analyze soil properties and soil aggregate characteristics. The results showed that soil nutrients varied greatly among the three grassland types, with the highest values in MM. At each site, grazing increased the content of sand and decreased the contents of silt and clay compared to fenced plots. Soil aggregate composition showed significant responses to both grassland type and grazing, especially the proportions of soil aggregates >2 mm, which significantly decreased by 51.7% on average in grazing plots compared with fenced plots. A significant decrease (on average, 25.1%) in the mean weight diameter (MWD) of soil aggregates under grazing was detected across all grassland types. The effect of grazing on nutrients in macroaggregates (>0.25 mm) was greater than that in microaggregates (<0.25 mm). Aggregate-associated SOC concentration decreased under grazing in MM and TS. However, grazing had no significant influence on the SOC density of MM, while it led to a significant decrease in TS and an increase in TSD. The magnitude of grazing effect size on aggregate-associated SOC varied with different soil particle sizes, with greater responses in aggregates >2 mm and the biggest value in TDS. In addition, the results of the correlation analysis and redundancy analysis (PDA) indicated that soil bulk density and nutrients made the main contribution to soil composition and stability of soil aggregates. Overall, grazing had a significant influence on soil aggregation, stability, and SOC, playing a crucial role in grassland soil stability and the accumulation of SOC.

Suggested Citation

  • Lianlian Fan & Yuanye Liang & Xiaofeng Li & Jiefei Mao & Guangyu Wang & Xuexi Ma & Yaoming Li, 2023. "Grazing Decreases Soil Aggregation and Has Different Effects on Soil Organic Carbon Storage across Different Grassland Types in Northern Xinjiang, China," Land, MDPI, vol. 12(8), pages 1-15, August.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1575-:d:1213768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/8/1575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/8/1575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghulam Yasin & Muhammad Farrakh Nawaz & Muhammad Zubair & Muhammad Farooq Azhar & Matoor Mohsin Gilani & Muhammad Nadeem Ashraf & Anzhen Qin & Shafeeq Ur Rahman, 2023. "Role of Traditional Agroforestry Systems in Climate Change Mitigation through Carbon Sequestration: An Investigation from the Semi-Arid Region of Pakistan," Land, MDPI, vol. 12(2), pages 1-15, February.
    2. Xu Bi & Bo Li & Xiangchao Xu & Lixin Zhang, 2020. "Response of Vegetation and Soil Characteristics to Grazing Disturbance in Mountain Meadows and Temperate Typical Steppe in the Arid Regions of Central Asian, Xinjiang," IJERPH, MDPI, vol. 17(12), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoping Li & Sai Hu & Lifu Jiang & Bing Han & Jie Li & Xuan Wei, 2023. "Spatiotemporal Patterns and the Development Path of Land-Use Carbon Emissions from a Low-Carbon Perspective: A Case Study of Guizhou Province," Land, MDPI, vol. 12(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1575-:d:1213768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.