IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i12p4199-d370644.html
   My bibliography  Save this article

Soil Microbial Community and Its Interaction with Soil Carbon Dynamics Following a Wetland Drying Process in Mu Us Sandy Land

Author

Listed:
  • Huan He

    (College of Science, Northwest Agricultural and Forestry University, Yangling 712100, China)

  • Yixuan Liu

    (College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling 712100, China)

  • Yue Hu

    (College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling 712100, China)

  • Mengqi Zhang

    (College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling 712100, China)

  • Guodong Wang

    (College of Science, Northwest Agricultural and Forestry University, Yangling 712100, China)

  • Weibo Shen

    (College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling 712100, China)

Abstract

Increasing drought globally is a severe threat to fragile desert wetland ecosystem. It is of significance to study the effects of wetland drying on microbial regulation of soil carbon (C) in the desert. In this study, we examined the impacts of wetland drying on microbial biomass, microbial community (bacteria, fungi) and microbial activity [basal microbial respiration, microbial metabolic quotient (qCO 2 )]. Relationships of microbial properties with biotic factors [litter, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP)], abiotic factors (soil moisture, pH and clay content) and biological processes (basal microbial respiration, qCO 2 ) were also developed. Results showed that the drying of wetland led to a decrease of soil microbial biomass carbon (MBC) content, microbial biomass nitrogen (MBN) content and fungi and bacterial abundance, and an increase of the fungi:bacteria ratio. Wetland drying also led to increased soil basal respiration and increased qCO 2 , which was attributed to lower soil clay content and litter N concentration. The MBC:SOC ratios were higher under drier soil conditions than under virgin wetland, which was attributed to stronger C conserve ability of fungi than bacteria. The wetland drying process exacerbated soil C loss by strengthening heterotrophic respiration; however, the exact effects of soil microbial community structure on microbial C mineralization were not clear in this study and need further research.

Suggested Citation

  • Huan He & Yixuan Liu & Yue Hu & Mengqi Zhang & Guodong Wang & Weibo Shen, 2020. "Soil Microbial Community and Its Interaction with Soil Carbon Dynamics Following a Wetland Drying Process in Mu Us Sandy Land," IJERPH, MDPI, vol. 17(12), pages 1-19, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4199-:d:370644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/12/4199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/12/4199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franciska T. de Vries & Mira E. Liiri & Lisa Bjørnlund & Matthew A. Bowker & Søren Christensen & Heikki M. Setälä & Richard D. Bardgett, 2012. "Land use alters the resistance and resilience of soil food webs to drought," Nature Climate Change, Nature, vol. 2(4), pages 276-280, April.
    2. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    3. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    4. Manuel Delgado-Baquerizo & Fernando T. Maestre & Antonio Gallardo & Matthew A. Bowker & Matthew D. Wallenstein & Jose Luis Quero & Victoria Ochoa & Beatriz Gozalo & Miguel García-Gómez & Santiago Soli, 2013. "Decoupling of soil nutrient cycles as a function of aridity in global drylands," Nature, Nature, vol. 502(7473), pages 672-676, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaochang Wu & Huayong Zhang & Zhongyu Wang & Wang Tian & Zhao Liu, 2024. "Patterns of Soil Stoichiometry Driven by Mixed Tree Species Proportions in Boreal Forest," Sustainability, MDPI, vol. 16(19), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    2. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Anna Jędrejek & Rafał Pudełko, 2023. "Exploring the Potential Use of Sentinel-1 and 2 Satellite Imagery for Monitoring Winter Wheat Growth under Agricultural Drought Conditions in North-Western Poland," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    4. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    5. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    6. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    7. Nabeel Bani Hani & Fakher J. Aukour & Mohammed I. Al-Qinna, 2022. "Investigating the Pearl Millet ( Pennisetum glaucum ) as a Climate-Smart Drought-Tolerant Crop under Jordanian Arid Environments," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    8. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    9. Fangtian Liu & Erqi Xu & Hongqi Zhang, 2024. "Assessing typhoon disaster mitigation capacity and its uncertainty analysis in Hainan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9401-9420, September.
    10. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    12. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    13. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    14. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    15. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    16. Yuan Li & Yi Dong & Dongqin Yin & Diyou Liu & Pengxin Wang & Jianxi Huang & Zhe Liu & Hongshuo Wang, 2020. "Evaluation of Drought Monitoring Effect of Winter Wheat in Henan Province of China Based on Multi-Source Data," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    17. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    18. Jing Peng & Li Dan & Jinming Feng & Kairan Ying & Xiba Tang & Fuqiang Yang, 2021. "Absolute Contribution of the Non-Uniform Spatial Distribution of Atmospheric CO 2 to Net Primary Production through CO 2 -Radiative Forcing," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    19. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    20. Huailei Cheng & Yuhong Wang & Dan Chong & Chao Xia & Lijun Sun & Jenny Liu & Kun Gao & Ruikang Yang & Tian Jin, 2023. "Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4199-:d:370644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.