IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i11p4133-d369487.html
   My bibliography  Save this article

The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review

Author

Listed:
  • Jiali Qian

    (School of Kinesiology, the University of Minnesota, 1900 University Ave. SE, Minneapolis, MN 55455, USA
    Department of Physical Education, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China)

  • Daniel J. McDonough

    (School of Kinesiology, the University of Minnesota, 1900 University Ave. SE, Minneapolis, MN 55455, USA)

  • Zan Gao

    (School of Kinesiology, the University of Minnesota, 1900 University Ave. SE, Minneapolis, MN 55455, USA)

Abstract

Objective purpose: This review synthesized the literature examining the effects of virtual reality (VR)-based exercise on physiological, psychological, and rehabilitative outcomes in various populations. Design: A systematic review. Data sources: 246 articles were retrieved using key words, such as “VR”, “exercise intervention”, “physiological”, “psychology”, and “rehabilitation” through nine databases including Academic Search Premier and PubMed. Eligibility criteria for selecting studies: 15 articles which met the following criteria were included in the review: (1) peer-reviewed; (2) published in English; (3) randomized controlled trials (RCTs), controlled trials or causal-comparative design; (4) interventions using VR devices; and (5) examined effects on physiological, psychological, and/or rehabilitative outcomes. Descriptive and thematic analyses were used. Results: Of the 12 articles examining physiological outcomes, eight showed a positive effect on physical fitness, muscle strength, balance, and extremity function. Only four articles examined the effects on psychological outcomes, three showed positive effects such that VR exercise could ease fatigue, tension, and depression and induce calmness and enhance quality of life. Nine articles investigated the effects of VR-based exercise on rehabilitative outcomes with physiological and/or psychological outcomes, and six observed significant positive changes. In detail, patients who suffered from chronic stroke, hemodialysis, spinal-cord injury, cerebral palsy in early ages, and cognitive decline usually saw better improvements using VR-based exercise. Conclusion: The findings suggest that VR exercise has the potential to exert a positive impact on individual’s physiological, psychological, and rehabilitative outcomes compared with traditional exercise. However, the quality, quantity, and sample size of existing studies are far from ideal. Therefore, more rigorous studies are needed to confirm the observed positive effects.

Suggested Citation

  • Jiali Qian & Daniel J. McDonough & Zan Gao, 2020. "The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:4133-:d:369487
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/11/4133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/11/4133/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seong-Hee Jo & Jin-Seok Park & Poung-Sik Yeon, 2021. "The Effect of Forest Video Using Virtual Reality on the Stress Reduction of University Students Focused on C University in Korea," IJERPH, MDPI, vol. 18(23), pages 1-11, December.
    2. Gopal Nambi & Mshari Alghadier & Faizan Zaffar Kashoo & Osama R. Aldhafian & Naif A. Nwihadh & Ayman K. Saleh & Mohamed A. Omar & Tohamy G. T. Hassan & Mohamed Nagah Ahmed Ibrahim & Hassan Fathy El Be, 2022. "Effects of Virtual Reality Exercises versus Isokinetic Exercises in comparison with Conventional Exercises on the Imaging Findings and Inflammatory Biomarker Changes in Soccer Players with Non-Specifi," IJERPH, MDPI, vol. 20(1), pages 1-14, December.
    3. Íbis A. P. Moraes & Joyce A. Lima & Nadja M. Silva & Amanda O. Simcsik & Ana C. Silveira & Lilian D. C. Menezes & Luciano V. Araújo & Tânia B. Crocetta & Mariana C. Voos & James Tonks & Talita D. Silv, 2022. "Effect of Longitudinal Practice in Real and Virtual Environments on Motor Performance, Physical Activity and Enjoyment in People with Autism Spectrum Disorder: A Prospective Randomized Crossover Contr," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    4. Alan Langer & Jacek Polechoński & Piotr Polechoński & Jarosław Cholewa, 2022. "Ruler Drop Method in Virtual Reality as an Accurate and Reliable Tool for Evaluation of Reaction Time of Mixed Martial Artists," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    5. Alessandra Perra & Chiara Laura Riccardo & Valerio De Lorenzo & Erika De Marco & Lorenzo Di Natale & Peter Konstantin Kurotschka & Antonio Preti & Mauro Giovanni Carta, 2023. "Fully Immersive Virtual Reality-Based Cognitive Remediation for Adults with Psychosocial Disabilities: A Systematic Scoping Review of Methods Intervention Gaps and Meta-Analysis of Published Effective," IJERPH, MDPI, vol. 20(2), pages 1-13, January.
    6. Xiaochen Zhang & Lanxin Hui & Muge Li & Jiajing Huang & Chengyuan Chen & Yunping Yang & Fuchuan Song & Fei Hu & Ding-Bang Luh, 2022. "Design to Assist Better Youthhood for Adolescents with Lower-Limb Disability through Virtual Reality Sports," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    7. Roxana Steliana Miclaus & Nadinne Roman & Ramona Henter & Silviu Caloian, 2021. "Lower Extremity Rehabilitation in Patients with Post-Stroke Sequelae through Virtual Reality Associated with Mirror Therapy," IJERPH, MDPI, vol. 18(5), pages 1-14, March.
    8. Oliver Czech & Katarzyna Siewierska & Aleksandra Krzywińska & Jakub Skórniak & Adam Maciejczyk & Rafał Matkowski & Joanna Szczepańska-Gieracha & Iwona Malicka, 2022. "Virtual Therapy Complementary Prehabilitation of Women Diagnosed with Breast Cancer—A Pilot Study," IJERPH, MDPI, vol. 20(1), pages 1-10, December.
    9. Jacek Polechoński & Katarzyna Nierwińska & Barbara Kalita & Piotr Wodarski, 2020. "Can Physical Activity in Immersive Virtual Reality Be Attractive and Have Sufficient Intensity to Meet Health Recommendations for Obese Children? A Pilot Study," IJERPH, MDPI, vol. 17(21), pages 1-14, November.
    10. Ja-Gyeong Yang & Ngeemasara Thapa & Hye-Jin Park & Seongryu Bae & Kyung Won Park & Jong-Hwan Park & Hyuntae Park, 2022. "Virtual Reality and Exercise Training Enhance Brain, Cognitive, and Physical Health in Older Adults with Mild Cognitive Impairment," IJERPH, MDPI, vol. 19(20), pages 1-14, October.
    11. Wangqian Fu & Chenying Ji, 2023. "Application and Effect of Virtual Reality Technology in Motor Skill Intervention for Individuals with Developmental Disabilities: A Systematic Review," IJERPH, MDPI, vol. 20(5), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:4133-:d:369487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.