IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i11p4076-d368558.html
   My bibliography  Save this article

Prediction of Epidemic Peak and Infected Cases for COVID-19 Disease in Malaysia, 2020

Author

Listed:
  • Abdallah Alsayed

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Hayder Sadir

    (Department of Computer and Wireless Communication, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Raja Kamil

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Laboratory of Computational Statistics and Operations Research, Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Hasan Sari

    (College of Computer Science and Information Technology, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

Abstract

The coronavirus COVID-19 has recently started to spread rapidly in Malaysia. The number of total infected cases has increased to 3662 on 05 April 2020, leading to the country being placed under lockdown. As the main public concern is whether the current situation will continue for the next few months, this study aims to predict the epidemic peak using the Susceptible–Exposed–Infectious–Recovered (SEIR) model, with incorporation of the mortality cases. The infection rate was estimated using the Genetic Algorithm (GA), while the Adaptive Neuro-Fuzzy Inference System (ANFIS) model was used to provide short-time forecasting of the number of infected cases. The results show that the estimated infection rate is 0.228 ± 0.013, while the basic reproductive number is 2.28 ± 0.13. The epidemic peak of COVID-19 in Malaysia could be reached on 26 July 2020, with an uncertain period of 30 days (12 July–11 August). Possible interventions by the government to reduce the infection rate by 25% over two or three months would delay the epidemic peak by 30 and 46 days, respectively. The forecasting results using the ANFIS model show a low Normalized Root Mean Square Error (NRMSE) of 0.041; a low Mean Absolute Percentage Error (MAPE) of 2.45%; and a high coefficient of determination (R 2 ) of 0.9964. The results also show that an intervention has a great effect on delaying the epidemic peak and a longer intervention period would reduce the epidemic size at the peak. The study provides important information for public health providers and the government to control the COVID-19 epidemic.

Suggested Citation

  • Abdallah Alsayed & Hayder Sadir & Raja Kamil & Hasan Sari, 2020. "Prediction of Epidemic Peak and Infected Cases for COVID-19 Disease in Malaysia, 2020," IJERPH, MDPI, vol. 17(11), pages 1-15, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:4076-:d:368558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/11/4076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/11/4076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadi, Kasra & Shamshirband, Shahaboddin & Kamsin, Amirrudin & Lai, P.C. & Mansor, Zulkefli, 2016. "Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 423-434.
    2. Lei Qin & Qiang Sun & Yidan Wang & Ke-Fei Wu & Mingchih Chen & Ben-Chang Shia & Szu-Yuan Wu, 2020. "Prediction of Number of Cases of 2019 Novel Coronavirus (COVID-19) Using Social Media Search Index," IJERPH, MDPI, vol. 17(7), pages 1-14, March.
    3. Hye-Suk Yi & Sangyoung Park & Kwang-Guk An & Keun-Chang Kwak, 2018. "Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    4. Xueying Li & Bing Xu & Jeffrey Shaman, 2019. "The Impact of Environmental Transmission and Epidemiological Features on the Geographical Translocation of Highly Pathogenic Avian Influenza Virus," IJERPH, MDPI, vol. 16(11), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miljana Milić & Jelena Milojković & Miljan Jeremić, 2022. "Optimal Neural Network Model for Short-Term Prediction of Confirmed Cases in the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    2. Sergej Gričar & Štefan Bojnec, 2022. "Did Human Microbes Affect Tourist Arrivals before the COVID-19 Shock? Pre-Effect Forecasting Model for Slovenia," IJERPH, MDPI, vol. 19(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
    2. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    3. Taixia Shen & Chao Wang, 2021. "Big Data Technology Applications and the Right to Health in China during the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(14), pages 1-15, July.
    4. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2020. "Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation," Energies, MDPI, vol. 13(10), pages 1-18, May.
    5. Bizuayehu Abebe Worke & Hans Bludszuweit & José A. Domínguez-Navarro, 2020. "Solar Radiation Estimation Using Data Mining Techniques for Remote Areas—A Case Study in Ethiopia," Energies, MDPI, vol. 13(21), pages 1-15, November.
    6. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    7. Rami Alamoudi & Osman Taylan & Mehmet Azmi Aktacir & Enrique Herrera-Viedma, 2021. "Designing a Solar Photovoltaic System for Generating Renewable Energy of a Hospital: Performance Analysis and Adjustment Based on RSM and ANFIS Approaches," Mathematics, MDPI, vol. 9(22), pages 1-24, November.
    8. Wang, Jianzhou & Dong, Yunxuan & Zhang, Kequan & Guo, Zhenhai, 2017. "A numerical model based on prior distribution fuzzy inference and neural networks," Renewable Energy, Elsevier, vol. 112(C), pages 486-497.
    9. Haleh Sadeghi & Saeed Reza Mohandes & M. Reza Hosseini & Saeed Banihashemi & Amir Mahdiyar & Arham Abdullah, 2020. "Developing an Ensemble Predictive Safety Risk Assessment Model: Case of Malaysian Construction Projects," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    10. Mengyue Yuan & Tong Liu & Chao Yang, 2022. "Exploring the Relationship among Human Activities, COVID-19 Morbidity, and At-Risk Areas Using Location-Based Social Media Data: Knowledge about the Early Pandemic Stage in Wuhan," IJERPH, MDPI, vol. 19(11), pages 1-22, May.
    11. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    12. A. Bassam & O. May Tzuc & M. Escalante Soberanis & L. J. Ricalde & B. Cruz, 2017. "Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    13. Kisi, Ozgur & Heddam, Salim & Yaseen, Zaher Mundher, 2019. "The implementation of univariable scheme-based air temperature for solar radiation prediction: New development of dynamic evolving neural-fuzzy inference system model," Applied Energy, Elsevier, vol. 241(C), pages 184-195.
    14. Mohamed Chaibi & EL Mahjoub Benghoulam & Lhoussaine Tarik & Mohamed Berrada & Abdellah El Hmaidi, 2021. "An Interpretable Machine Learning Model for Daily Global Solar Radiation Prediction," Energies, MDPI, vol. 14(21), pages 1-19, November.
    15. Heli Lu & Menglin Xia & Ziyuan Qin & Siqi Lu & Ruimin Guan & Yuna Yang & Changhong Miao & Taizheng Chen, 2022. "The Built Environment Assessment of Residential Areas in Wuhan during the Coronavirus Disease (COVID-19) Outbreak," IJERPH, MDPI, vol. 19(13), pages 1-20, June.
    16. Israel Edem Agbehadji & Bankole Osita Awuzie & Alfred Beati Ngowi & Richard C. Millham, 2020. "Review of Big Data Analytics, Artificial Intelligence and Nature-Inspired Computing Models towards Accurate Detection of COVID-19 Pandemic Cases and Contact Tracing," IJERPH, MDPI, vol. 17(15), pages 1-16, July.
    17. Baser, Furkan & Demirhan, Haydar, 2017. "A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation," Energy, Elsevier, vol. 123(C), pages 229-240.
    18. Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & Felix T. S. Chan & Mohammad A. M. Abdel-Aal, 2020. "Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations," IJERPH, MDPI, vol. 17(19), pages 1-25, September.
    19. Youssef Kassem & Hüseyin Çamur & Salman Mohammed Awadh Alhuoti, 2020. "Solar Energy Technology for Northern Cyprus: Assessment, Statistical Analysis, and Feasibility Study," Energies, MDPI, vol. 13(4), pages 1-29, February.
    20. Taicir Mezghani & Mouna Boujelbène Abbes, 2023. "Forecast the Role of GCC Financial Stress on Oil Market and GCC Financial Markets Using Convolutional Neural Networks," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(3), pages 505-530, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:4076-:d:368558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.