IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i3p397-d202175.html
   My bibliography  Save this article

Arbuscular Mycorrhizal Fungi Alter Plant and Soil C:N:P Stoichiometries Under Warming and Nitrogen Input in a Semiarid Meadow of China

Author

Listed:
  • Linlin Mei

    (Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Xue Yang

    (Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Hongbing Cao

    (Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Tao Zhang

    (Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Jixun Guo

    (Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China)

Abstract

Ecological stoichiometry has been widely used to determine how plant-soil systems respond to global change and to reveal which factors limit plant growth. Arbuscular mycorrhizal fungi (AMF) can increase plants’ uptake of nutrients such as nitrogen (N) and phosphorus (P), thereby altering plant and soil stoichiometries. To understand the regulatory effect of AMF feedback on plants and soil stoichiometry under global change, a microcosm experiment was conducted with warming and N input. The C 4 grass Setaria viridis , C 3 grass Leymus chinensis , and Chenopodiaceae species Suaeda corniculata were studied. The results showed that the mycorrhizal benefits for the C 4 grass S. viridis were greater than those for the C 3 grass L. chinensis , whereas for the Chenopodiaceae species S. corniculata , AMF symbiosis was antagonistic. Under N input and a combination of warming and N input, AMF significantly decreased the N:P ratios of all three species. Under N input, the soil N content and the N:P ratio were decreased significantly in the presence of AMF, whereas the soil C:N ratio was increased. These results showed that AMF can reduce the P limitation caused by N input and improve the efficiency of nutrient utilization, slow the negative influence of global change on plant growth, and promote grassland sustainability.

Suggested Citation

  • Linlin Mei & Xue Yang & Hongbing Cao & Tao Zhang & Jixun Guo, 2019. "Arbuscular Mycorrhizal Fungi Alter Plant and Soil C:N:P Stoichiometries Under Warming and Nitrogen Input in a Semiarid Meadow of China," IJERPH, MDPI, vol. 16(3), pages 1-12, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:397-:d:202175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/3/397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/3/397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuejun Liu & Ying Zhang & Wenxuan Han & Aohan Tang & Jianlin Shen & Zhenling Cui & Peter Vitousek & Jan Willem Erisman & Keith Goulding & Peter Christie & Andreas Fangmeier & Fusuo Zhang, 2013. "Enhanced nitrogen deposition over China," Nature, Nature, vol. 494(7438), pages 459-462, February.
    2. Christopher M. Clark & David Tilman, 2008. "Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands," Nature, Nature, vol. 451(7179), pages 712-715, February.
    3. Manjula Govindarajulu & Philip E. Pfeffer & Hairu Jin & Jehad Abubaker & David D. Douds & James W. Allen & Heike Bücking & Peter J. Lammers & Yair Shachar-Hill, 2005. "Nitrogen transfer in the arbuscular mycorrhizal symbiosis," Nature, Nature, vol. 435(7043), pages 819-823, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Guang Jie & Yi-Wen Tan & Dong-Ying Yang & Lian-Bao Kan, 2023. "Effects of Rhizophagus intraradices and Acinetobacter calcoaceticus on Soybean Growth and Carbendazim Residue," Sustainability, MDPI, vol. 15(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhang & Xiaoan Zuo & Peng Lv, 2023. "Effects of Grazing, Extreme Drought, Extreme Rainfall and Nitrogen Addition on Vegetation Characteristics and Productivity of Semiarid Grassland," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    2. Mingxu Liu & Fang Shang & Xingjie Lu & Xin Huang & Yu Song & Bing Liu & Qiang Zhang & Xuejun Liu & Junji Cao & Tingting Xu & Tiantian Wang & Zhenying Xu & Wen Xu & Wenling Liao & Ling Kang & Xuhui Cai, 2022. "Unexpected response of nitrogen deposition to nitrogen oxide controls and implications for land carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Chengyang Zhou & Shining Zuo & Xiaonan Wang & Yixin Ji & Qiezhuo Lamao & Li Liu & Ding Huang, 2022. "Effects of Grazing Sheep and Mowing on Grassland Vegetation Community and Soil Microbial Activity under Different Levels of Nitrogen Deposition," Agriculture, MDPI, vol. 12(8), pages 1-18, July.
    4. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    5. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    6. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    7. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    8. Khor, Ling & Zeller, Manfred, 2015. "Perception of Substandard Fertilizer and Its Impact on Use Intensity," 2015 Conference, August 9-14, 2015, Milan, Italy 211843, International Association of Agricultural Economists.
    9. Rosalina Armando Tamele & Hideto Ueno & Yo Toma & Nobuki Morita, 2020. "Nitrogen Recoveries and Nitrogen Use Efficiencies of Organic Fertilizers with Different C/N Ratios in Maize Cultivation with Low-Fertile Soil by 15 N Method," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    10. Ke Xu & Chunmei Wang & Xintong Yang, 2017. "Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    11. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    13. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Mirhaj, M. & Razzak, M.A. & Wahab, M.A., 2014. "Comparison of nitrogen balances and efficiencies in rice cum prawn vs. rice cum fish cultures in Mymensingh, North-Eastern Bangladesh," Agricultural Systems, Elsevier, vol. 125(C), pages 54-62.
    15. Francisco J. Areal & Wantao Yu & Kevin Tansey & Jiahuan Liu, 2022. "Measuring Sustainable Intensification Using Satellite Remote Sensing Data," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    16. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    17. Xue Meng & Zhiguo Zhu & Jing Xue & Chunguang Wang & Xiaoxin Sun, 2023. "Methane and Nitrous Oxide Emissions from a Temperate Peatland under Simulated Enhanced Nitrogen Deposition," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    18. Zhang, Guo & Wang, Xiaoke & Sun, Binfeng & Zhao, Hong & Lu, Fei & Zhang, Lu, 2016. "Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland," Agricultural Systems, Elsevier, vol. 146(C), pages 1-10.
    19. Longyu Shi & Miao Zhang & Yajing Zhang & Bin Yang & Huaping Sun & Tong Xu, 2018. "Comprehensive Analysis of Nitrogen Deposition in Urban Ecosystem: A Case Study of Xiamen City, China," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    20. Baozhi Li & Bin Guo & Qibiao Zhu & Ni Zhuo, 2023. "Impact of Technical Training and Personalized Information Support on Farmers’ Fertilization Behavior: Evidence from China," Sustainability, MDPI, vol. 15(11), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:397-:d:202175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.