IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1133-d876744.html
   My bibliography  Save this article

Effects of Grazing Sheep and Mowing on Grassland Vegetation Community and Soil Microbial Activity under Different Levels of Nitrogen Deposition

Author

Listed:
  • Chengyang Zhou

    (College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China)

  • Shining Zuo

    (College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China)

  • Xiaonan Wang

    (College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China)

  • Yixin Ji

    (College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China)

  • Qiezhuo Lamao

    (College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China)

  • Li Liu

    (Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China)

  • Ding Huang

    (College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China)

Abstract

Increasing nitrogen deposition plays a critical role in the material circulation of grassland. Mowing and grazing sheep are important means of utilizing grassland. This study investigated the effects of nitrogen deposition, sheep grazing and mowing on the soil, vegetation and soil microorganisms of grassland. N deposition increased soil inorganic nitrogen, SOM and microbial activity, and decreased soil pH, while grazing sheep and mowing had opposing effects. Compared with mowing, grazing sheep decreased the range of grass groups in the community. N deposition increased the proportion of Leymus chinensis in the community and decreased community diversity. N deposition enhanced the contribution rate of soil to the vegetation community, and reduced the effect of microorganisms on the vegetation community. In addition, N deposition significantly interacted with mowing and grazing sheep in terms of effects on soil inorganic nitrogen, soil organic matter (SOM), microbial respiration (Q), microbial mass carbon (MBC), and vegetation diversity. Therefore, appropriate N deposition in sheep grazing and mown grasslands could enhance inorganic N and organic matter, increase microbial activity, offset the adverse effects of grazing sheep and mowing, and contribute to maintaining community diversity and grassland productivity.

Suggested Citation

  • Chengyang Zhou & Shining Zuo & Xiaonan Wang & Yixin Ji & Qiezhuo Lamao & Li Liu & Ding Huang, 2022. "Effects of Grazing Sheep and Mowing on Grassland Vegetation Community and Soil Microbial Activity under Different Levels of Nitrogen Deposition," Agriculture, MDPI, vol. 12(8), pages 1-18, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1133-:d:876744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuejun Liu & Ying Zhang & Wenxuan Han & Aohan Tang & Jianlin Shen & Zhenling Cui & Peter Vitousek & Jan Willem Erisman & Keith Goulding & Peter Christie & Andreas Fangmeier & Fusuo Zhang, 2013. "Enhanced nitrogen deposition over China," Nature, Nature, vol. 494(7438), pages 459-462, February.
    2. Christopher M. Clark & David Tilman, 2008. "Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands," Nature, Nature, vol. 451(7179), pages 712-715, February.
    3. David Tilman & Peter B. Reich & Johannes M. H. Knops, 2006. "Biodiversity and ecosystem stability in a decade-long grassland experiment," Nature, Nature, vol. 441(7093), pages 629-632, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhang & Xiaoan Zuo & Peng Lv, 2023. "Effects of Grazing, Extreme Drought, Extreme Rainfall and Nitrogen Addition on Vegetation Characteristics and Productivity of Semiarid Grassland," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    2. Mingxu Liu & Fang Shang & Xingjie Lu & Xin Huang & Yu Song & Bing Liu & Qiang Zhang & Xuejun Liu & Junji Cao & Tingting Xu & Tiantian Wang & Zhenying Xu & Wen Xu & Wenling Liao & Ling Kang & Xuhui Cai, 2022. "Unexpected response of nitrogen deposition to nitrogen oxide controls and implications for land carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Linlin Mei & Xue Yang & Hongbing Cao & Tao Zhang & Jixun Guo, 2019. "Arbuscular Mycorrhizal Fungi Alter Plant and Soil C:N:P Stoichiometries Under Warming and Nitrogen Input in a Semiarid Meadow of China," IJERPH, MDPI, vol. 16(3), pages 1-12, January.
    4. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    5. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    6. Lipy Adhikari & Sabarnee Tuladhar & Abid Hussain & Kamal Aryal, 2019. "Are Traditional Food Crops Really ‘Future Smart Foods?’ A Sustainability Perspective," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    7. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    8. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    9. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    10. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    11. Khor, Ling & Zeller, Manfred, 2015. "Perception of Substandard Fertilizer and Its Impact on Use Intensity," 2015 Conference, August 9-14, 2015, Milan, Italy 211843, International Association of Agricultural Economists.
    12. Finger, Robert & Buchmann, Nina, 2015. "An ecological economic assessment of risk-reducing effects of species diversity in managed grasslands," Ecological Economics, Elsevier, vol. 110(C), pages 89-97.
    13. Moritz von Cossel & Andrea Bauerle & Meike Boob & Ulrich Thumm & Martin Elsaesser & Iris Lewandowski, 2019. "The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany," Agriculture, MDPI, vol. 9(9), pages 1-17, September.
    14. Rosalina Armando Tamele & Hideto Ueno & Yo Toma & Nobuki Morita, 2020. "Nitrogen Recoveries and Nitrogen Use Efficiencies of Organic Fertilizers with Different C/N Ratios in Maize Cultivation with Low-Fertile Soil by 15 N Method," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    15. Ke Xu & Chunmei Wang & Xintong Yang, 2017. "Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    16. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    18. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. Mirhaj, M. & Razzak, M.A. & Wahab, M.A., 2014. "Comparison of nitrogen balances and efficiencies in rice cum prawn vs. rice cum fish cultures in Mymensingh, North-Eastern Bangladesh," Agricultural Systems, Elsevier, vol. 125(C), pages 54-62.
    20. Sari J Himanen & Hanna Mäkinen & Karoliina Rimhanen & Riitta Savikko, 2016. "Engaging Farmers in Climate Change Adaptation Planning: Assessing Intercropping as a Means to Support Farm Adaptive Capacity," Agriculture, MDPI, vol. 6(3), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1133-:d:876744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.