IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i2p179-d196307.html
   My bibliography  Save this article

Impact of Morphological Characteristics of Green Roofs on Pedestrian Cooling in Subtropical Climates

Author

Listed:
  • Gaochuan Zhang

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Bao-Jie He

    (Faculty of Built Environment, University of New South Wales, Sydney 2052, Australia)

  • Zongzhou Zhu

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Bart Julien Dewancker

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

Abstract

Growing and densifying cities set a challenge for preserving and enhancing green spaces to cool urban spaces. Green roofs, involving the planting of vegetation on rooftops, are regarded as an alternative approach to enhancing urban greenery and urban cooling. For better cooling performances, it is essential to reasonably configure green roofs, especially in real and complex neighborhoods. Therefore, the aim of this paper is to investigate the impact of morphological characteristics of green roofs on pedestrian cooling in real and complex neighborhoods. In specific, based on an ENVI-met model, we studied the effect of greening layout, coverage ratio, vegetation height, and building height on pedestrian air temperature reduction in the tropical city of Hangzhou, China. Results indicate green roofs could generate moderate effects on pedestrian air temperature reduction (around 0.10–0.30 °C), while achieving a cooling performance of 0.82 °C. Green roofs in upwind zones were able to generate the most favorable cooling performance, while green roofs in downwind zones made slight differences to pedestrian thermal environments. Green roofs with a low coverage ratio were not useful for lowering pedestrian temperature, and a greening coverage ratio of 25–75% in upwind zones was cost-effective in real neighborhoods. Locations that were horizontally close to green roofs enjoyed better cooling performances. Increasing vegetation height could strengthen cooling effects of green roofs, while an increase in building height weakened the cooling performance. Nevertheless, higher building height could enhance pedestrian cooling performances because of building shading effects. In addition, because of wind effects and building shading, building height limits for the cooling performance of green roofs could be higher than 60 m.

Suggested Citation

  • Gaochuan Zhang & Bao-Jie He & Zongzhou Zhu & Bart Julien Dewancker, 2019. "Impact of Morphological Characteristics of Green Roofs on Pedestrian Cooling in Subtropical Climates," IJERPH, MDPI, vol. 16(2), pages 1-20, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:2:p:179-:d:196307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/2/179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/2/179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    2. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    3. Lilliana L.H. Peng & C. Y. Jim, 2013. "Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation," Energies, MDPI, vol. 6(2), pages 1-21, January.
    4. Zhifeng Wu & Fanhua Kong & Yening Wang & Ranhao Sun & Liding Chen, 2016. "The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China," IJERPH, MDPI, vol. 13(12), pages 1-16, December.
    5. Majed Abuseif & Zhonghua Gou, 2018. "A Review of Roofing Methods: Construction Features, Heat Reduction, Payback Period and Climatic Responsiveness," Energies, MDPI, vol. 11(11), pages 1-22, November.
    6. Hong Jin & Zheming Liu & Yumeng Jin & Jian Kang & Jing Liu, 2017. "The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Ma & Mengying Wang & Jingyuan Zhao & Lei Zhang & Wanrong Liu, 2020. "Performance of Different Urban Design Parameters in Improving Outdoor Thermal Comfort and Health in a Pedestrianized Zone," IJERPH, MDPI, vol. 17(7), pages 1-19, March.
    2. Lei Zhang & Xuan Ma & Jingyuan Zhao & Mengying Wang, 2019. "Tourists’ Thermal Experience and Health in a Commercial Pedestrianized Block: A Case Study in a Hot and Humid Region of Southern China," IJERPH, MDPI, vol. 16(24), pages 1-15, December.
    3. Jaehyun Ha & Yeri Choi & Sugie Lee & Kyushik Oh, 2020. "Diurnal and Seasonal Variations in the Effect of Urban Environmental Factors on Air Temperature: A Consecutive Regression Analysis Approach," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    4. Yara Nasr & Henri El Zakhem & Ameur El Amine Hamami & Makram El Bachawati & Rafik Belarbi, 2024. "Comprehensive Assessment of the Impact of Green Roofs and Walls on Building Energy Performance: A Scientific Review," Energies, MDPI, vol. 17(20), pages 1-58, October.
    5. Dong, Xin & He, Bao-Jie, 2023. "A standardized assessment framework for green roof decarbonization: A review of embodied carbon, carbon sequestration, bioenergy supply, and operational carbon scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    3. Yi-Yu Huang & Tien-Jih Ma, 2019. "Using Edible Plant and Lightweight Expanded Clay Aggregate (LECA) to Strengthen the Thermal Performance of Extensive Green Roofs in Subtropical Urban Areas," Energies, MDPI, vol. 12(3), pages 1-27, January.
    4. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    5. Noemi Caltabellotta & Felicia Cavaleri & Carlo Greco & Kestutis Navickas & Carlo Scibetta & Laura Giammanco, 2019. "Integration of green roofs&walls in urban areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 61-78.
    6. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    7. Alessandra Battisti & Flavia Laureti & Michele Zinzi & Giulia Volpicelli, 2018. "Climate Mitigation and Adaptation Strategies for Roofs and Pavements: A Case Study at Sapienza University Campus," Sustainability, MDPI, vol. 10(10), pages 1-30, October.
    8. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    9. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    10. Dong, Xin & He, Bao-Jie, 2023. "A standardized assessment framework for green roof decarbonization: A review of embodied carbon, carbon sequestration, bioenergy supply, and operational carbon scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    11. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    12. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou & Dimitrios Bikas, 2020. "Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review," Energies, MDPI, vol. 13(6), pages 1-25, March.
    13. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    14. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    15. Renata Giedych & Gabriela Maksymiuk & Agata Cieszewska, 2024. "Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study," Land, MDPI, vol. 13(9), pages 1-18, September.
    16. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    17. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    18. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    19. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    20. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:2:p:179-:d:196307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.