IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i15p2737-d253477.html
   My bibliography  Save this article

Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas

Author

Listed:
  • Henrique Cabral

    (Irstea, UR EABX, Centre de Bordeaux, 50 avenue de Verdun, 33612 Cestas, France
    MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

  • Vanessa Fonseca

    (MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

  • Tânia Sousa

    (MARETEC - Marine, Environment and Technology Center, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Miguel Costa Leal

    (MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
    MARETEC - Marine, Environment and Technology Center, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
    Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

Abstract

Coastal areas have been increasingly affected by human activities, marine pollution and climate change are among the most important pressures affecting these environments. Human-induced pressures occur in a cumulative way and generate additive, antagonistic or synergistic effects. Knowledge on synergistic effects is crucial to coastal zone management, since they may imply a change in human uses of these systems, as well as dedicated action plans in order to reduce hazards and environmental risks. In this work, we provide an overview of the available literature on synergistic effects between climate change and chemical pollution, and discuss current knowledge, methodological approaches, and research gaps and needs. Interactions between these two pressures may be climate change dominant (climate change leads to an increase in contaminant exposure or toxicity) or contaminant-dominant (chemical exposure leads to an increase in climate change susceptibility), but the mechanistic drivers of such processes are not well known. Results from a few meta-analyses studies and reviews showed that synergistic interactions tend to be more frequent compared to additive and antagonistic ones. However, most of the studies are individual-based and assess the cumulative effects of a few contaminants individually in laboratory settings together with few climate variables, particularly temperature and pH. Nevertheless, a wide diversity of contaminants have already been individually tested, spanning from metals, persistent organic pollutants and, more recently, emergent pollutants. Population and community based approaches are less frequent but have generated very interesting and more holistic perspectives. Methodological approaches are quite diverse, from laboratory studies to mesocosm and field studies, or based on statistical or modelling tools, each with their own potential and limitations. More holistic comparisons integrating several pressures and their combinations and a multitude of habitats, taxa, life-stages, among others, are needed, as well as insights from meta-analyses and systematic reviews.

Suggested Citation

  • Henrique Cabral & Vanessa Fonseca & Tânia Sousa & Miguel Costa Leal, 2019. "Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas," IJERPH, MDPI, vol. 16(15), pages 1-17, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2737-:d:253477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/15/2737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/15/2737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Barange & G. Merino & J. L. Blanchard & J. Scholtens & J. Harle & E. H. Allison & J. I. Allen & J. Holt & S. Jennings, 2014. "Impacts of climate change on marine ecosystem production in societies dependent on fisheries," Nature Climate Change, Nature, vol. 4(3), pages 211-216, March.
    2. Ken Caldeira & Michael E. Wickett, 2003. "Anthropogenic carbon and ocean pH," Nature, Nature, vol. 425(6956), pages 365-365, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amirah Azzeri & Goh Hong Ching & Hafiz Jaafar & Mohd Iqbal Mohd Noor & Nurain Amirah Razi & Amy Yee-Hui Then & Julia Suhaimi & Fatimah Kari & Maznah Dahlui, 2020. "A Review of Published Literature Regarding Health Issues of Coastal Communities in Sabah, Malaysia," IJERPH, MDPI, vol. 17(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detlef Vuuren & Elke Stehfest, 2013. "If climate action becomes urgent: the importance of response times for various climate strategies," Climatic Change, Springer, vol. 121(3), pages 473-486, December.
    2. Abdunnur Abdunnur, 2020. "Nexus of Fisheries and Agriculture Production and Urbanization on Ecological Footprint: New Evidence from Indonesian Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 190-195.
    3. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    4. Bourret, A. & Martin, Y. & Troussellier, M., 2007. "Modelling the response of microbial food web to an increase of atmospheric CO2 partial pressure in a marine Mediterranean coastal ecosystem (Brusc Lagoon, France)," Ecological Modelling, Elsevier, vol. 208(2), pages 189-204.
    5. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    6. Simen Alexander Linge Johnsen & Jörg Bollmann, 2020. "Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-29, March.
    7. Ollier Clifford, 2019. "The hoax of ocean acidification," Quaestiones Geographicae, Sciendo, vol. 38(3), pages 59-66, September.
    8. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    9. Rau, Greg H. & Knauss, Kevin G. & Langer, William H. & Caldeira, Ken, 2007. "Reducing energy-related CO2 emissions using accelerated weathering of limestone," Energy, Elsevier, vol. 32(8), pages 1471-1477.
    10. Cheung, William W.L. & Jones, Miranda C. & Reygondeau, Gabriel & Stock, Charles A. & Lam, Vicky W.Y. & Frölicher, Thomas L., 2016. "Structural uncertainty in projecting global fisheries catches under climate change," Ecological Modelling, Elsevier, vol. 325(C), pages 57-66.
    11. Qi Chen & Weiteng Shen & Bing Yu, 2018. "Assessing the Vulnerability of Marine Fisheries in China: Towards an Inter-Provincial Perspective," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    12. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
    13. Ponce Oliva, Roberto D. & Vasquez-Lavín, Felipe & San Martin, Valeska A. & Hernández, José Ignacio & Vargas, Cristian A. & Gonzalez, Pablo S. & Gelcich, Stefan, 2019. "Ocean Acidification, Consumers' Preferences, and Market Adaptation Strategies in the Mussel Aquaculture Industry," Ecological Economics, Elsevier, vol. 158(C), pages 42-50.
    14. Greasley, David & Hanley, Nicholas & Kunnas, Jan & McLaughlin, Eoin & Oxley, Les & Warde, Paul, 2012. "How Environmental Pollution from Fossil Fuels can be included in measures of National Accounts and Estimates of Genuine Savings," Stirling Economics Discussion Papers 2012-16, University of Stirling, Division of Economics.
    15. Daiju Narita & Katrin Rehdanz & Richard Tol, 2012. "Economic costs of ocean acidification: a look into the impacts on global shellfish production," Climatic Change, Springer, vol. 113(3), pages 1049-1063, August.
    16. Alva-Basurto, Jorge Christian & Arias-González, Jesús Ernesto, 2014. "Modelling the effects of climate change on a Caribbean coral reef food web," Ecological Modelling, Elsevier, vol. 289(C), pages 1-14.
    17. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).
    18. Jie Wang & Peiling Yao & Jiaming Liu & Xun Wang & Jingjing Mao & Jiayuan Xu & Jiarui Wang, 2023. "Reconstruction of Surface Seawater pH in the North Pacific," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    19. Choi, Jun-Ki & Friley, Paul & Alfstad, Thomas, 2012. "Implications of energy policy on a product system's dynamic life-cycle environmental impact: Survey and model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4744-4752.
    20. Narita, Daiju & Rehdanz, Katrin & Tol, Richard S. J., 2011. "Economic Costs of Ocean Acidification: A Look into the Impacts on Shellfish Production," Papers WP391, Economic and Social Research Institute (ESRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2737-:d:253477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.