IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i13p2442-d246871.html
   My bibliography  Save this article

Integrated Effects of Co-Inoculation with Phosphate-Solubilizing Bacteria and N 2 -Fixing Bacteria on Microbial Population and Soil Amendment Under C Deficiency

Author

Listed:
  • Zhikang Wang

    (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China)

  • Ziyun Chen

    (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China)

  • Xiangxiang Fu

    (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China)

Abstract

The inoculation of beneficial microorganisms to improve plant growth and soil properties is a promising strategy in the soil amendment. However, the effects of co-inoculation with phosphate-solubilizing bacteria (PSB) and N 2 -fixing bacteria (NFB) on the soil properties of typical C-deficient soil remain unclear. Based on a controlled experiment and a pot experiment, we examined the effects of PSB (M: Bacillus megaterium and F: Pseudomonas fluorescens ), NFB (C: Azotobacter chroococcum and B: Azospirillum brasilence ), and combined PSB and NFB treatments on C, N, P availability, and enzyme activities in sterilized soil, as well as the growth of Cyclocarya Paliurus seedlings grow in unsterilized soil. During a 60-day culture, prominent increases in soil inorganic N and available P contents were detected after bacteria additions. Three patterns were observed for different additions according to the dynamic bacterial growth. Synergistic effects between NFB and PSB were obvious, co-inoculations with NFB enhanced the accumulation of available P. However, decreases in soil available P and N were observed on the 60th day, which was induced by the decreases in bacterial quantities under C deficiency. Besides, co-inoculations with PSB and NFB resulted in greater performance in plant growth promotion. Aimed at amending soil with a C supply shortage, combined PSB and NFB treatments are more appropriate for practical fertilization at intervals of 30–45 days. The results demonstrate that co-inoculations could have synergistic interactions during culture and application, which may help with understanding the possible mechanism of soil amendment driven by microorganisms under C deficiency, thereby providing an alternative option for amending such soil.

Suggested Citation

  • Zhikang Wang & Ziyun Chen & Xiangxiang Fu, 2019. "Integrated Effects of Co-Inoculation with Phosphate-Solubilizing Bacteria and N 2 -Fixing Bacteria on Microbial Population and Soil Amendment Under C Deficiency," IJERPH, MDPI, vol. 16(13), pages 1-15, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:13:p:2442-:d:246871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/13/2442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/13/2442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qingxiang Yang & Hao Zhang & Yuhui Guo & Tiantian Tian, 2016. "Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi," IJERPH, MDPI, vol. 13(7), pages 1-12, June.
    2. Yin, Huajun & Zhao, Wenqiang & Li, Ting & Cheng, Xinying & Liu, Qing, 2018. "Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2695-2702.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bangxi Zhang & Tianhong Fu & Chung-Yu Guan & Shihao Cui & Beibei Fan & Yi Tan & Wenhai Luo & Quanquan Wei & Guoxue Li & Yutao Peng, 2022. "Environmental Life Cycle Assessments of Chicken Manure Compost Using Tobacco Residue, Mushroom Bran, and Biochar as Additives," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    2. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Jinwu Wang & Nuan Wen & Ziming Liu & Wenqi Zhou & Han Tang & Qi Wang & Jinfeng Wang, 2022. "Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    5. Bingbing Huang & Hui Kong & Jinhong Yu & Xiaoyou Zhang, 2022. "A Study on the Impact of Low-Carbon Technology Application in Agriculture on the Returns of Large-Scale Farmers," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    6. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    7. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    9. Du, Xue-zhu & Hao, Mian & Guo, Li-jin & Li, Shi-hao & Hu, Wan-ling & Sheng, Feng & Li, Cheng-fang, 2022. "Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China," Agricultural Water Management, Elsevier, vol. 262(C).
    10. Gaoming Xu & Yixuan Xie & Md. A. Matin & Ruiyin He & Qishuo Ding, 2022. "Effect of Straw Length, Stubble Height and Rotary Speed on Residue Incorporation by Rotary Tillage in Intensive Rice–Wheat Rotation System," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    11. Shengchun Li & Yilin Zhang & Lihao Guo & Xiaofang Li, 2022. "Impact of Tillage and Straw Treatment Methods on Rice Growth and Yields in a Rice–Ratoon Rice Cropping System," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    12. Cui, Xiaohui & Guo, Liyue & Li, Caihong & Liu, Meizhen & Wu, Guanglei & Jiang, Gaoming, 2021. "The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Li, Shuo & Wang, Shujuan & Shi, Jianglan & Tian, Xiaohong & Wu, Jiechen, 2022. "Economic, energy and environmental performance assessment on wheat production under water-saving cultivation strategies," Energy, Elsevier, vol. 261(PB).
    14. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    15. Yao, Dong & Xu, Zaifeng & Qi, Huaqing & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong & Cui, Peizhe, 2022. "Carbon footprint and water footprint analysis of generating synthetic natural gas from biomass," Renewable Energy, Elsevier, vol. 186(C), pages 780-789.
    16. Hao Zhang & Xunan Li & Qingxiang Yang & Linlin Sun & Xinxin Yang & Mingming Zhou & Rongzhen Deng & Linqian Bi, 2017. "Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure," IJERPH, MDPI, vol. 14(11), pages 1-12, November.
    17. Xiujuan Chen & Linhai Wu & Xuyan Xie, 2018. "Assessing the Linkages between Knowledge and Use of Veterinary Antibiotics by Pig Farmers in Rural China," IJERPH, MDPI, vol. 15(6), pages 1-13, May.
    18. Xi Yang & Pengyu Sun & Botao Liu & Imtiaz Ahmed & Zhixiong Xie & Bo Zhang, 2024. "Effect of Extending High-Temperature Duration on ARG Rebound in a Co-Composting Process for Organic Wastes," Sustainability, MDPI, vol. 16(13), pages 1-15, June.
    19. Liu, Beibei & Wu, Qiaoran & Wang, Feng & Zhang, Bing, 2019. "Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis," Energy, Elsevier, vol. 171(C), pages 393-402.
    20. Guo, Xiaogang & Wang, Lifang & Guo, Ying & Liu, Yuxia, 2024. "The impact of sustainable consumption behaviour on natural resource conservation in China: A cross-sectional analysis," Resources Policy, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:13:p:2442-:d:246871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.