IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i13p2299-d243920.html
   My bibliography  Save this article

Characteristics of Authigenic Minerals around the Sulfate-Methane Transition Zone in the Methane-Rich Sediments of the Northern South China Sea: Inorganic Geochemical Evidence

Author

Listed:
  • Daidai Wu

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of sciences, Guangzhou 510640, China
    Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China
    Laboratory of Marine Mineral Resources, Pilot National Laboratory for Marine Sciences and Technology (Qingdao), Qingdao 266071, China)

  • Tiantian Sun

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of sciences, Guangzhou 510640, China
    Ocean College, Zhejiang University, Zhoushan 316021, China)

  • Rui Xie

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of sciences, Guangzhou 510640, China
    Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou 510301, China)

  • Mengdi Pan

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of sciences, Guangzhou 510640, China)

  • Xuegang Chen

    (Ocean College, Zhejiang University, Zhoushan 316021, China)

  • Ying Ye

    (Ocean College, Zhejiang University, Zhoushan 316021, China)

  • Lihua Liu

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of sciences, Guangzhou 510640, China)

  • Nengyou Wu

    (Laboratory of Marine Mineral Resources, Pilot National Laboratory for Marine Sciences and Technology (Qingdao), Qingdao 266071, China
    Key Laboratory of Gas Hydrate, Ministry of Naturaland Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China)

Abstract

Sediments at marine cold seep areas provide potential archives of past fluid flow, which allow insights into the evolution of past methane seepage activities. However, signals for anaerobic oxidation of methane (AOM) might be obscured in bulk sediments in cold-seep settings due to several factors, especially flood and turbidite deposition. Comprehensive inorganic data were gathered in this study to explore the availability of related records at cold seeps and to provide insights into the evolution of past methane seepage activities. Sediments collected from the site 973-4 in the Taixinan Basin on the northern slope of the South China Sea were characterized in terms of total carbon and sulfur, δ 13 C values of total organic carbon (δ 13 C TIC ), δ 34 S values of chromium reducible sulfur (δ 34 S CRS ), and foraminiferal oxygen and carbon isotopes. The results confirmed a strong correlation between formation of authigenic minerals and AOM. Moreover, the 34 S enrichments and abundant chromium reducible sulfur (CRS) contents in the authigenic sulfides in the sulfate–methane transition zone (SMTZ) within 619–900 cm below seafloor (cmbsf) reflected past high methane fluxes supported by constant methane seepages. Lithological distribution and AMS (Accelerator Mass Spectra) 14 C dating of planktonic foraminifera show that the turbidite (~35.14 ka) was related to a foraminifera-rich interval (Unit II: 440-619 cmbsf) and increased carbonate productivity during the last glacial maximum (LGM). Enrichment of Mo and U was observed accompanied by low contents of nutrient metals (Al, Ti, V, Ni, Fe, Mn, and Cu) in Unit II. The foraminifera-rich interval (Unit II) of cold seep sediments was probably linked to the phenomenon of inconsecutive sedimentary sequence due to the turbidites, which resulted in the lack of Fe, Mn, and Ba enrichment. There is no U enrichment but only Mo enrichment within Unit III, which might be related to H 2 S produced by AOM during the methane seepages. Based on the above results, it can be speculated that this area has experienced multiple-episodes of methane seep events. Further exploration of AOM should focus on the risks of rapid deposition, especially the impact of turbidity current on sediments.

Suggested Citation

  • Daidai Wu & Tiantian Sun & Rui Xie & Mengdi Pan & Xuegang Chen & Ying Ye & Lihua Liu & Nengyou Wu, 2019. "Characteristics of Authigenic Minerals around the Sulfate-Methane Transition Zone in the Methane-Rich Sediments of the Northern South China Sea: Inorganic Geochemical Evidence," IJERPH, MDPI, vol. 16(13), pages 1-18, June.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:13:p:2299-:d:243920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/13/2299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/13/2299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gunter Wegener & Viola Krukenberg & Dietmar Riedel & Halina E. Tegetmeyer & Antje Boetius, 2015. "Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria," Nature, Nature, vol. 526(7574), pages 587-590, October.
    2. Antje Boetius & Katrin Ravenschlag & Carsten J. Schubert & Dirk Rickert & Friedrich Widdel & Armin Gieseke & Rudolf Amann & Bo Barker Jørgensen & Ursula Witte & Olaf Pfannkuche, 2000. "A marine microbial consortium apparently mediating anaerobic oxidation of methane," Nature, Nature, vol. 407(6804), pages 623-626, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengxiong Wu & Jie Li & Andy O. Leu & Dirk V. Erler & Terra Stark & Gene W. Tyson & Zhiguo Yuan & Simon J. McIlroy & Jianhua Guo, 2022. "Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Richard B. Coffin & Leila J. Hamdan & Joseph P. Smith & Paula S. Rose & Rebecca E. Plummer & Brandon Yoza & Ingo Pecher & Michael T. Montgomery, 2014. "Contribution of Vertical Methane Flux to Shallow Sediment Carbon Pools across Porangahau Ridge, New Zealand," Energies, MDPI, vol. 7(8), pages 1-25, August.
    3. Maria De La Fuente & Sandra Arndt & Héctor Marín-Moreno & Tim A. Minshull, 2022. "Assessing the Benthic Response to Climate-Driven Methane Hydrate Destabilisation: State of the Art and Future Modelling Perspectives," Energies, MDPI, vol. 15(9), pages 1-32, May.
    4. Marie C. Schoelmerich & Lynn Ly & Jacob West-Roberts & Ling-Dong Shi & Cong Shen & Nikhil S. Malvankar & Najwa Taib & Simonetta Gribaldo & Ben J. Woodcroft & Christopher W. Schadt & Basem Al-Shayeb & , 2024. "Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Yunru Chen & Liang Dong & Weikang Sui & Mingyang Niu & Xingqian Cui & Kai-Uwe Hinrichs & Fengping Wang, 2024. "Cycling and persistence of iron-bound organic carbon in subseafloor sediments," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Klaus Wallmann & Elena Pinero & Ewa Burwicz & Matthias Haeckel & Christian Hensen & Andrew Dale & Lars Ruepke, 2012. "The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach," Energies, MDPI, vol. 5(7), pages 1-50, July.
    8. Olivier N. Lemaire & Gunter Wegener & Tristan Wagner, 2024. "Ethane-oxidising archaea couple CO2 generation to F420 reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Jarrod J Scott & John A Breier & George W Luther III & David Emerson, 2015. "Microbial Iron Mats at the Mid-Atlantic Ridge and Evidence that Zetaproteobacteria May Be Restricted to Iron-Oxidizing Marine Systems," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-19, March.
    10. Pilar C. Portela & Catharine C. Shipps & Cong Shen & Vishok Srikanth & Carlos A. Salgueiro & Nikhil S. Malvankar, 2024. "Widespread extracellular electron transfer pathways for charging microbial cytochrome OmcS nanowires via periplasmic cytochromes PpcABCDE," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Song-Can Chen & Sheng Chen & Niculina Musat & Steffen Kümmel & Jiaheng Ji & Marie Braad Lund & Alexis Gilbert & Oliver J. Lechtenfeld & Hans-Hermann Richnow & Florin Musat, 2024. "Back flux during anaerobic oxidation of butane supports archaea-mediated alkanogenesis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Min Luo & Linying Chen & Hongpeng Tong & Wen Yan & Duofu Chen, 2014. "Gas Hydrate Occurrence Inferred from Dissolved Cl − Concentrations and δ 18 O Values of Pore Water and Dissolved Sulfate in the Shallow Sediments of the Pockmark Field in Southwestern Xisha Uplift, No," Energies, MDPI, vol. 7(6), pages 1-14, June.
    13. Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Niels Klitgord & Daniel Segrè, 2010. "Environments that Induce Synthetic Microbial Ecosystems," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-17, November.
    15. Xiyang Dong & Yongyi Peng & Muhua Wang & Laura Woods & Wenxue Wu & Yong Wang & Xi Xiao & Jiwei Li & Kuntong Jia & Chris Greening & Zongze Shao & Casey R. J. Hubert, 2023. "Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Richard B. Coffin & Christopher L. Osburn & Rebecca E. Plummer & Joseph P. Smith & Paula S. Rose & Kenneth S. Grabowski, 2015. "Deep Sediment-Sourced Methane Contribution to Shallow Sediment Organic Carbon: Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico," Energies, MDPI, vol. 8(3), pages 1-23, February.
    17. Wood, Thomas K. & Gurgan, Ilke & Howley, Ethan T. & Riedel-Kruse, Ingmar H., 2023. "Converting methane into electricity and higher-value chemicals at scale via anaerobic microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Heleen T. Ouboter & Rob Mesman & Tom Sleutels & Jelle Postma & Martijn Wissink & Mike S. M. Jetten & Annemiek Ter Heijne & Tom Berben & Cornelia U. Welte, 2024. "Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Xueqin Zhang & Georgina H. Joyce & Andy O. Leu & Jing Zhao & Hesamoddin Rabiee & Bernardino Virdis & Gene W. Tyson & Zhiguo Yuan & Simon J. McIlroy & Shihu Hu, 2023. "Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Jiafang Huang & Min Luo & Yuxiu Liu & Yuxue Zhang & Ji Tan, 2019. "Effects of Tidal Scenarios on the Methane Emission Dynamics in the Subtropical Tidal Marshes of the Min River Estuary in Southeast China," IJERPH, MDPI, vol. 16(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:13:p:2299-:d:243920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.