IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v526y2015i7574d10.1038_nature15733.html
   My bibliography  Save this article

Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria

Author

Listed:
  • Gunter Wegener

    (Max-Planck Institute for Marine Microbiology
    MARUM, Center for Marine Environmental Sciences, University Bremen)

  • Viola Krukenberg

    (Max-Planck Institute for Marine Microbiology)

  • Dietmar Riedel

    (Max Planck Institute for Biophysical Chemistry)

  • Halina E. Tegetmeyer

    (Alfred Wegener Institute Helmholtz Center for Polar and Marine Research
    Center for Biotechnology, Bielefeld University)

  • Antje Boetius

    (Max-Planck Institute for Marine Microbiology
    MARUM, Center for Marine Environmental Sciences, University Bremen
    Alfred Wegener Institute Helmholtz Center for Polar and Marine Research)

Abstract

Marine anaerobic methanotrophic archaea and sulfate-reducing bacteria connect by pili-like nanowires, suggesting that direct interspecies exchange of electrons could be a fundamental mechanism in the anaerobic oxidation of methane.

Suggested Citation

  • Gunter Wegener & Viola Krukenberg & Dietmar Riedel & Halina E. Tegetmeyer & Antje Boetius, 2015. "Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria," Nature, Nature, vol. 526(7574), pages 587-590, October.
  • Handle: RePEc:nat:nature:v:526:y:2015:i:7574:d:10.1038_nature15733
    DOI: 10.1038/nature15733
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature15733
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature15733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier N. Lemaire & Gunter Wegener & Tristan Wagner, 2024. "Ethane-oxidising archaea couple CO2 generation to F420 reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Daidai Wu & Tiantian Sun & Rui Xie & Mengdi Pan & Xuegang Chen & Ying Ye & Lihua Liu & Nengyou Wu, 2019. "Characteristics of Authigenic Minerals around the Sulfate-Methane Transition Zone in the Methane-Rich Sediments of the Northern South China Sea: Inorganic Geochemical Evidence," IJERPH, MDPI, vol. 16(13), pages 1-18, June.
    3. Marie C. Schoelmerich & Lynn Ly & Jacob West-Roberts & Ling-Dong Shi & Cong Shen & Nikhil S. Malvankar & Najwa Taib & Simonetta Gribaldo & Ben J. Woodcroft & Christopher W. Schadt & Basem Al-Shayeb & , 2024. "Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Mengxiong Wu & Jie Li & Andy O. Leu & Dirk V. Erler & Terra Stark & Gene W. Tyson & Zhiguo Yuan & Simon J. McIlroy & Jianhua Guo, 2022. "Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Wood, Thomas K. & Gurgan, Ilke & Howley, Ethan T. & Riedel-Kruse, Ingmar H., 2023. "Converting methane into electricity and higher-value chemicals at scale via anaerobic microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Pilar C. Portela & Catharine C. Shipps & Cong Shen & Vishok Srikanth & Carlos A. Salgueiro & Nikhil S. Malvankar, 2024. "Widespread extracellular electron transfer pathways for charging microbial cytochrome OmcS nanowires via periplasmic cytochromes PpcABCDE," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Rui Xie & Daidai Wu & Jie Liu & Tiantian Sun & Lihua Liu & Nengyou Wu, 2019. "Geochemical Evidence of Metal-Driven Anaerobic Oxidation of Methane in the Shenhu Area, the South China Sea," IJERPH, MDPI, vol. 16(19), pages 1-17, September.
    8. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Song-Can Chen & Sheng Chen & Niculina Musat & Steffen Kümmel & Jiaheng Ji & Marie Braad Lund & Alexis Gilbert & Oliver J. Lechtenfeld & Hans-Hermann Richnow & Florin Musat, 2024. "Back flux during anaerobic oxidation of butane support archaea-mediated alkanogenesis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:526:y:2015:i:7574:d:10.1038_nature15733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.