IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i9p1917-d167524.html
   My bibliography  Save this article

Going Green or Going Away? A Spatial Empirical Examination of the Relationship between Environmental Regulations, Biased Technological Progress, and Green Total Factor Productivity

Author

Listed:
  • Xueli Wang

    (Center for Studies of Marine Economy and Sustainable Development, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China)

  • Caizhi Sun

    (China Institute of Boundary and Ocean Studies, Wuhan University, Wuhan 430072, China)

  • Song Wang

    (Institute for the Development of Central China, Wuhan University, Wuhan 430072, China)

  • Zhixiong Zhang

    (College of Urban and Environment, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China)

  • Wei Zou

    (College of Urban and Environment, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China)

Abstract

China’s economic development has resulted in significant resource consumption and environmental damage. However, technological progress is important for achieving coordinated economic development and environmental protection. Appropriate environmental regulation policies are also important. Although green total factor productivity, environmental regulations, and technological progress vary by location, few studies have been conducted from a spatial perspective. However, spatial spillover effects should be taken into consideration. This study used energy consumption, the sum of physical capital stock and ecological service value as total capital stock, the number of employed people as inputs, sulfur dioxide emissions as undesired outputs, and green GDP as total output to obtain green TFP through a slacks-based measure (SBM) global Malmquist-Luenberger Index. This study also estimated China’s biased technological progress under environmental constraints from 2004 to 2015 based on relevant data (e.g., green GDP, total capital stock, and employment figures). The relationship between green total factor productivity (GTFP), technological progress, and environmental regulation was then examined using a spatial Durbin model. Results were as follows: (1) Based on the complementary elements, although the labor costs gradually increase, the rapid accumulation of capital leads to technological progress that is biased toward capital. However, technological progress in the labor bias can significantly increase GTFP. (2) There is a u-shaped relationship between existing environmental regulations and GTFP. Technological progress can significantly promote GTFP in the surrounding areas through existing environmental regulations. (3) Under spatial weight, the secondary industry coefficient was negative while human capital stock and FDID had positive effects on GTFP. Technological progress is the source of economic growth. It is therefore necessary to promote biased technological development and improve labor-force skills while implementing effective environmental regulation policies.

Suggested Citation

  • Xueli Wang & Caizhi Sun & Song Wang & Zhixiong Zhang & Wei Zou, 2018. "Going Green or Going Away? A Spatial Empirical Examination of the Relationship between Environmental Regulations, Biased Technological Progress, and Green Total Factor Productivity," IJERPH, MDPI, vol. 15(9), pages 1-23, September.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:9:p:1917-:d:167524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/9/1917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/9/1917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel L. Millimet & Jayjit Roy, 2016. "Empirical Tests of the Pollution Haven Hypothesis When Environmental Regulation is Endogenous," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 652-677, June.
    2. Wolfgang Keller, 2002. "Geographic Localization of International Technology Diffusion," American Economic Review, American Economic Association, vol. 92(1), pages 120-142, March.
    3. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    4. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
    5. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    6. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    7. Daniel L. Millimet & Santanu Roy & Aditi Sengupta, 2009. "Environmental Regulations and Economic Activity: Influence on Market Structure," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 99-118, September.
    8. Yantuan Yu & Jianhuan Huang & Nengsheng Luo, 2018. "Can More Environmental Information Disclosure Lead to Higher Eco-Efficiency? Evidence from China," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    9. David M. Konisky, 2009. "Inequities in enforcement? Environmental justice and government performance," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 102-121.
    10. Zhijun Feng & Wei Chen, 2018. "Environmental Regulation, Green Innovation, and Industrial Green Development: An Empirical Analysis Based on the Spatial Durbin Model," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    11. Jiangfeng Hu & Zhao Wang & Yuehan Lian & Qinghua Huang, 2018. "Environmental Regulation, Foreign Direct Investment and Green Technological Progress—Evidence from Chinese Manufacturing Industries," IJERPH, MDPI, vol. 15(2), pages 1-14, January.
    12. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    13. Rainer Klump & Peter McAdam & Alpo Willman, 2007. "Factor Substitution and Factor-Augmenting Technical Progress in the United States: A Normalized Supply-Side System Approach," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 183-192, February.
    14. Song, Malin & Wang, Shuhong, 2016. "Can employment structure promote environment-biased technical progress?," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 285-292.
    15. Solarin, Sakiru Adebola & Al-Mulali, Usama & Musah, Ibrahim & Ozturk, Ilhan, 2017. "Investigating the pollution haven hypothesis in Ghana: An empirical investigation," Energy, Elsevier, vol. 124(C), pages 706-719.
    16. Fredriksson, Per G. & Millimet, Daniel L., 2002. "Strategic Interaction and the Determination of Environmental Policy across U.S. States," Journal of Urban Economics, Elsevier, vol. 51(1), pages 101-122, January.
    17. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    18. H Fukuyama & W L Weber, 2009. "Estimating indirect allocative inefficiency and productivity change," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1594-1608, November.
    19. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    20. Fare, Rolf & Grosskopf, Shawna & Norris, Mary, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply," American Economic Review, American Economic Association, vol. 87(5), pages 1040-1043, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Chen & Zhigang Chen, 2021. "Can China’s Environmental Regulations Effectively Reduce Pollution Emissions?," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    2. Zuzana Smeets Kristkova & Cornelis Gardebroek & Michiel van Dijk & Hans van Meijl, 2017. "The impact of R&D on factor-augmenting technical change – an empirical assessment at the sector level," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 385-417, July.
    3. Song, Malin & Xie, Qianjiao & Wang, Shuhong & Zhou, Li, 2021. "Intensity of environmental regulation and environmentally biased technology in the employment market," Omega, Elsevier, vol. 100(C).
    4. Ezra Oberfield & Devesh Raval, 2021. "Micro Data and Macro Technology," Econometrica, Econometric Society, vol. 89(2), pages 703-732, March.
    5. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    6. Alvarez-Cuadrado, Francisco & Long, Ngo Van & Poschke, Markus, 2018. "Capital-labor substitution, structural change and the labor income share," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 206-231.
    7. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    8. Clemens Struck & Adnan Velic, 2017. "To Augment Or Not To Augment? A Conjecture On Asymmetric Technical Change," Trinity Economics Papers tep0117, Trinity College Dublin, Department of Economics.
    9. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    10. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    11. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin & Lin, Yu-Hui, 2016. "Non-radial profit performance: An application to Taiwanese banks," Omega, Elsevier, vol. 65(C), pages 111-121.
    12. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    13. Miguel A. Leon-Ledesma & Mathan Satchi, 2015. "Appropriate Technology and the Labour Share," Studies in Economics 1505, School of Economics, University of Kent, revised Nov 2016.
    14. Lei Jin & Keran Duan & Xu Tang, 2018. "What Is the Relationship between Technological Innovation and Energy Consumption? Empirical Analysis Based on Provincial Panel Data from China," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    15. Chen, Xi, 2017. "Biased Technical Change, Scale, And Factor Substitution In U.S. Manufacturing Industries," Macroeconomic Dynamics, Cambridge University Press, vol. 21(2), pages 488-514, March.
    16. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    17. Clemens Struck & Adnan Velic, 2017. "Automation, New Technology, and Non-Homothetic Preferences," Trinity Economics Papers tep1217, Trinity College Dublin, Department of Economics.
    18. Briec, Walter & Kerstens, Kristiaan, 2009. "The Luenberger productivity indicator: An economic specification leading to infeasibilities," Economic Modelling, Elsevier, vol. 26(3), pages 597-600, May.
    19. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    20. McAdam, Peter & Muck, Jakub & Growiec, Jakub, 2015. "Will the true labor share stand up?," Working Paper Series 1806, European Central Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:9:p:1917-:d:167524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.