IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i6p1128-d149877.html
   My bibliography  Save this article

Modeling the Heterogeneity of Dengue Transmission in a City

Author

Listed:
  • Lingcai Kong

    (Department of Mathematics and Physics, North China Electric Power University; Baoding 071003, China)

  • Jinfeng Wang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; Beijing 100864, China
    Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

  • Zhongjie Li

    (Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

  • Shengjie Lai

    (WorldPop, Department of Geography and Environment, University of Southampton, Southampton SO17 IBJ, UK
    Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200433, China
    Flowminder Foundation, Roslagsgatan 17, SE-11355 Stockholm, Sweden)

  • Qiyong Liu

    (State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
    WHO Collaborating Center for Vector Surveillance and Management, Beijing 102206, China)

  • Haixia Wu

    (State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

  • Weizhong Yang

    (Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

Abstract

Dengue fever is one of the most important vector-borne diseases in the world, and modeling its transmission dynamics allows for determining the key influence factors and helps to perform interventions. The heterogeneity of mosquito bites of humans during the spread of dengue virus is an important factor that should be considered when modeling the dynamics. However, traditional models generally assumed homogeneous mixing between humans and vectors, which is inconsistent with reality. In this study, we proposed a compartmental model with negative binomial distribution transmission terms to model this heterogeneity at the population level. By including the aquatic stage of mosquitoes and incorporating the impacts of the environment and climate factors, an extended model was used to simulate the 2014 dengue outbreak in Guangzhou, China, and to simulate the spread of dengue in different scenarios. The results showed that a high level of heterogeneity can result in a small peak size in an outbreak. As the level of heterogeneity decreases, the transmission dynamics approximate the dynamics predicted by the corresponding homogeneous mixing model. The simulation results from different scenarios showed that performing interventions early and decreasing the carrying capacity for mosquitoes are necessary for preventing and controlling dengue epidemics. This study contributes to a better understanding of the impact of heterogeneity during the spread of dengue virus.

Suggested Citation

  • Lingcai Kong & Jinfeng Wang & Zhongjie Li & Shengjie Lai & Qiyong Liu & Haixia Wu & Weizhong Yang, 2018. "Modeling the Heterogeneity of Dengue Transmission in a City," IJERPH, MDPI, vol. 15(6), pages 1-21, May.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:6:p:1128-:d:149877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/6/1128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/6/1128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miranda Chan & Michael A Johansson, 2012. "The Incubation Periods of Dengue Viruses," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    2. T Alex Perkins & Thomas W Scott & Arnaud Le Menach & David L Smith, 2013. "Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-16, December.
    3. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    4. Zsolt Ugray & Leon Lasdon & John Plummer & Fred Glover & James Kelly & Rafael Martí, 2007. "Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 328-340, August.
    5. Annelise Tran & Grégory L'Ambert & Guillaume Lacour & Romain Benoît & Marie Demarchi & Myriam Cros & Priscilla Cailly & Mélaine Aubry-Kientz & Thomas Balenghien & Pauline Ezanno, 2013. "A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations," IJERPH, MDPI, vol. 10(5), pages 1-22, April.
    6. Dennis L Chao & Ira M Longini Jr & M Elizabeth Halloran, 2013. "The Effects of Vector Movement and Distribution in a Mathematical Model of Dengue Transmission," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-6, October.
    7. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    8. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    9. Cailly, Priscilla & Tran, Annelise & Balenghien, Thomas & L’Ambert, Grégory & Toty, Céline & Ezanno, Pauline, 2012. "A climate-driven abundance model to assess mosquito control strategies," Ecological Modelling, Elsevier, vol. 227(C), pages 7-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicente Navarro Valencia & Yamilka Díaz & Juan Miguel Pascale & Maciej F. Boni & Javier E. Sanchez-Galan, 2021. "Assessing the Effect of Climate Variables on the Incidence of Dengue Cases in the Metropolitan Region of Panama City," IJERPH, MDPI, vol. 18(22), pages 1-18, November.
    2. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    2. Wei Duan, 2021. "Matrix-Based Formulation of Heterogeneous Individual-Based Models of Infectious Diseases: Using SARS Epidemic as a Case Study," IJERPH, MDPI, vol. 18(11), pages 1-20, May.
    3. Yuying Li & Taojun Hu & Xin Gai & Yunjun Zhang & Xiaohua Zhou, 2021. "Transmission Dynamics, Heterogeneity and Controllability of SARS-CoV-2: A Rural–Urban Comparison," IJERPH, MDPI, vol. 18(10), pages 1-10, May.
    4. Yunjun Zhang & Yuying Li & Lu Wang & Mingyuan Li & Xiaohua Zhou, 2020. "Evaluating Transmission Heterogeneity and Super-Spreading Event of COVID-19 in a Metropolis of China," IJERPH, MDPI, vol. 17(10), pages 1-11, May.
    5. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    6. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    7. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    8. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    9. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    10. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    11. Xu Wang & Jingni Song & Qunqi Wu, 2021. "An Economic Equilibrium Model for Optimizing Passenger Transport Corridor Mode Structure Based on Travel Surplus," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    12. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    13. Sean L Wu & Héctor M Sánchez C. & John M Henry & Daniel T Citron & Qian Zhang & Kelly Compton & Biyonka Liang & Amit Verma & Derek A T Cummings & Arnaud Le Menach & Thomas W Scott & Anne L Wilson & St, 2020. "Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-32, April.
    14. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    15. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    17. Dionisios Koutsantonis & Konstantinos Koutsantonis & Nikolaos P. Bakas & Vagelis Plevris & Andreas Langousis & Savvas A. Chatzichristofis, 2022. "Bibliometric Literature Review of Adaptive Learning Systems," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    18. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    19. Paul C. Fenema & A. Georges L. Romme, 2020. "Latent organizing for responding to emergencies: foundations for research," Journal of Organization Design, Springer;Organizational Design Community, vol. 9(1), pages 1-16, December.
    20. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:6:p:1128-:d:149877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.