IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i3p547-d136925.html
   My bibliography  Save this article

Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps

Author

Listed:
  • Ekaterini Hadjisolomou

    (Laboratory of Marine Geology and Physical Oceanography, Department of Geology, Patras University, 26504 Patras, Greece)

  • Konstantinos Stefanidis

    (Department of Biology, University of Patras-University Campus Rio, 26500 Patras, Greece
    Sector of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • George Papatheodorou

    (Laboratory of Marine Geology and Physical Oceanography, Department of Geology, Patras University, 26504 Patras, Greece)

  • Evanthia Papastergiadou

    (Department of Biology, University of Patras-University Campus Rio, 26500 Patras, Greece)

Abstract

During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters’ relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl - a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication.

Suggested Citation

  • Ekaterini Hadjisolomou & Konstantinos Stefanidis & George Papatheodorou & Evanthia Papastergiadou, 2018. "Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps," IJERPH, MDPI, vol. 15(3), pages 1-16, March.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:547-:d:136925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/3/547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/3/547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binwu Wang & Hong Li & Danfeng Sun, 2014. "Social-Ecological Patterns of Soil Heavy Metals Based on a Self-Organizing Map (SOM): A Case Study in Beijing, China," IJERPH, MDPI, vol. 11(4), pages 1-21, March.
    2. Kostas Moustris & Ioanna Larissi & Panagiotis Nastos & Athanasios Paliatsos, 2011. "Precipitation Forecast Using Artificial Neural Networks in Specific Regions of Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1979-1993, June.
    3. Yan An & Zhihong Zou & Ranran Li, 2016. "Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map," IJERPH, MDPI, vol. 13(1), pages 1-13, January.
    4. Oh, Hee-Mock & Ahn, Chi-Yong & Lee, Jae-Won & Chon, Tae-Soo & Choi, Kyung Hee & Park, Young-Seuk, 2007. "Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks," Ecological Modelling, Elsevier, vol. 203(1), pages 109-118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong-Kyun Kim & Hyunbin Jo & Inwoo Han & Ihn-Sil Kwak, 2019. "Explicit Characterization of Spatial Heterogeneity Based on Water Quality, Sediment Contamination, and Ichthyofauna in a Riverine-to-Coastal Zone," IJERPH, MDPI, vol. 16(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    2. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    3. R Maheswaran & Rakesh Khosa, 2014. "A Wavelet-Based Second Order Nonlinear Model for Forecasting Monthly Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5411-5431, December.
    4. Tian, Wenchong & Liao, Zhenliang & Zhang, Jin, 2017. "An optimization of artificial neural network model for predicting chlorophyll dynamics," Ecological Modelling, Elsevier, vol. 364(C), pages 42-52.
    5. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    6. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    7. Fuping Liu & Ying Liu & Chen Yang & Ruixun Lai, 2022. "A New Precipitation Prediction Method Based on CEEMDAN-IWOA-BP Coupling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4785-4797, September.
    8. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    9. Kyriakos Skarlatos & Eleni S. Bekri & Dimitrios Georgakellos & Polychronis Economou & Sotirios Bersimis, 2023. "Projecting Annual Rainfall Timeseries Using Machine Learning Techniques," Energies, MDPI, vol. 16(3), pages 1-20, February.
    10. D. Parker & S. Priest, 2012. "The Fallibility of Flood Warning Chains: Can Europe’s Flood Warnings Be Effective?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2927-2950, August.
    11. Morteza Pakdaman & Iman Babaeian & Zohreh Javanshiri & Yashar Falamarzi, 2022. "European Multi Model Ensemble (EMME): A New Approach for Monthly Forecast of Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 611-623, January.
    12. Youngmin Seo & Sungwon Kim & Vijay Singh, 2015. "Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2189-2204, May.
    13. Changsam Jeong & Ju-Young Shin & Taesoon Kim & Jun-Haneg Heo, 2012. "Monthly Precipitation Forecasting with a Neuro-Fuzzy Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4467-4483, December.
    14. Kim, Hyo Gyeom & Hong, Sungwon & Jeong, Kwang-Seuk & Kim, Dong-Kyun & Joo, Gea-Jae, 2019. "Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River," Ecological Modelling, Elsevier, vol. 398(C), pages 67-76.
    15. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:547-:d:136925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.