IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v203y2007i1p109-118.html
   My bibliography  Save this article

Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks

Author

Listed:
  • Oh, Hee-Mock
  • Ahn, Chi-Yong
  • Lee, Jae-Won
  • Chon, Tae-Soo
  • Choi, Kyung Hee
  • Park, Young-Seuk

Abstract

The water quality and phytoplankton communities in the Daechung Reservoir, Korea, were monitored from summer to autumn in 1999, 2001, and 2003. The temporal patterns of cyanobacterial blooming caused by Microcystis were then elucidated using a combination of two artificial neural networks (ANNs): self-organizing map (SOM) and multilayer perceptron (MLP). The SOM was initially used to cluster the phytoplankton communities, then the MLP was applied to identify the major environmental factors causing the abundance of phytoplankton in the clustered communities. The SOM divided the phytoplankton communities into four clusters based on their algal composition (Cyanophyceae, Chlorophyceae, Bacillariophyceae, and others). In particular, cluster II was mostly composed of sampling times in August and September, and closely matched the period of severe cyanobacterial bloom dominated by Cyanophyceae. Meanwhile, cluster IV was mainly composed of the samples collected in the other periods, covering April, May, June, and October, and was mostly dominated by Bacillariophyceae. Cyanophyceae was the main component of the total algae, and its variation among the clusters showed a similar pattern to that of the changes in the chlorophyll-a concentration. Based on the MLP model, the water temperature, total particulate nitrogen, daily irradiance, and total nitrogen were highlighted as the four most important environmental variables predicting cyanobacterial abundance, yet quite different environmental variables were found to affect the chlorophyll-a concentration. The usage of sampled data and analyses by ANNs are also discussed with reference to an early alert system for algal bloom.

Suggested Citation

  • Oh, Hee-Mock & Ahn, Chi-Yong & Lee, Jae-Won & Chon, Tae-Soo & Choi, Kyung Hee & Park, Young-Seuk, 2007. "Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks," Ecological Modelling, Elsevier, vol. 203(1), pages 109-118.
  • Handle: RePEc:eee:ecomod:v:203:y:2007:i:1:p:109-118
    DOI: 10.1016/j.ecolmodel.2006.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000600562X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2006.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Wenchong & Liao, Zhenliang & Zhang, Jin, 2017. "An optimization of artificial neural network model for predicting chlorophyll dynamics," Ecological Modelling, Elsevier, vol. 364(C), pages 42-52.
    2. Kim, Hyo Gyeom & Hong, Sungwon & Jeong, Kwang-Seuk & Kim, Dong-Kyun & Joo, Gea-Jae, 2019. "Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River," Ecological Modelling, Elsevier, vol. 398(C), pages 67-76.
    3. Ekaterini Hadjisolomou & Konstantinos Stefanidis & George Papatheodorou & Evanthia Papastergiadou, 2018. "Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps," IJERPH, MDPI, vol. 15(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:203:y:2007:i:1:p:109-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.