IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v119y2019icp139-155.html
   My bibliography  Save this article

Robust location-allocation network design for earthquake preparedness

Author

Listed:
  • Paul, Jomon A.
  • Wang, Xinfang (Jocelyn)

Abstract

We develop robust models for earthquake preparedness by optimizing the number, location, and capacity of distribution centers (DCs). The goal is to minimize the total social costs, which include setup and initial supplies, as well as the deprivation costs associated with delayed access to supplies. The models incorporate various earthquake magnitude-specific uncertainties, such as facility damage, casualty by severity, and travel time. Examining the concept of social costs in light of an emerging concern in humanitarian logistics - the robustness of relief networks, we model two types of robustness: parameter uncertainty within a scenario and relative regret across scenarios. This unique approach reveals (1) the magnitude of social costs in the aftermath of an earthquake; (2) the hidden risks associated with inaccurate modeling of deprivation costs; and (3) the impact of budgetary constraints. We demonstrate the applicability of our approach via a case study featuring the Northridge region in California, which experienced two of the strongest earthquakes recorded in North America in 1971 and 1994.

Suggested Citation

  • Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
  • Handle: RePEc:eee:transb:v:119:y:2019:i:c:p:139-155
    DOI: 10.1016/j.trb.2018.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518300961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul, Jomon Aliyas & Wang, Xinfang (Jocelyn), 2015. "Robust optimization for United States Department of Agriculture food aid bid allocations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 129-146.
    2. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(2), pages 109-110, August.
    3. Lu, Chung-Cheng, 2013. "Robust weighted vertex p-center model considering uncertain data: An application to emergency management," European Journal of Operational Research, Elsevier, vol. 230(1), pages 113-121.
    4. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    5. Davis, Lauren B. & Samanlioglu, Funda & Qu, Xiuli & Root, Sarah, 2013. "Inventory planning and coordination in disaster relief efforts," International Journal of Production Economics, Elsevier, vol. 141(2), pages 561-573.
    6. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    7. Wilfredo Yushimito & Miguel Jaller & Satish Ukkusuri, 2012. "A Voronoi-Based Heuristic Algorithm for Locating Distribution Centers in Disasters," Networks and Spatial Economics, Springer, vol. 12(1), pages 21-39, March.
    8. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    9. Junfeng Tian & Jinfeng Yue, 2014. "Bounds of Relative Regret Limit in p-Robust Supply Chain Network Design," Production and Operations Management, Production and Operations Management Society, vol. 23(10), pages 1811-1831, October.
    10. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    11. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(1), pages 1-2, May.
    12. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    13. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    14. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Location and capacity allocations decisions to mitigate the impacts of unexpected disasters," European Journal of Operational Research, Elsevier, vol. 251(1), pages 252-263.
    15. Torabi, S.A. & Mansouri, S.A., 2015. "Integrated business continuity and disaster recovery planning: Towards organizational resilienceAuthor-Name: Sahebjamnia, N," European Journal of Operational Research, Elsevier, vol. 242(1), pages 261-273.
    16. Jomon Aliyas Paul & Rajan Batta, 2008. "Models for hospital location and capacity allocation for an area prone to natural disasters," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 3(5), pages 473-496.
    17. Martin K. Starr & Luk N. Van Wassenhove, 2014. "Introduction to the Special Issue on Humanitarian Operations and Crisis Management," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 925-937, June.
    18. Campbell, Ann Melissa & Jones, Philip C., 2011. "Prepositioning supplies in preparation for disasters," European Journal of Operational Research, Elsevier, vol. 209(2), pages 156-165, March.
    19. Rongbing Huang & Seokjin Kim & Mozart Menezes, 2010. "Facility location for large-scale emergencies," Annals of Operations Research, Springer, vol. 181(1), pages 271-286, December.
    20. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    2. Ghasemi, Peiman & Khalili-Damghani, Kaveh, 2021. "A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 69-95.
    3. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. Lee, Yu-Ching & Chen, Yu-Shih & Chen, Albert Y., 2022. "Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 1-23.
    5. Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.
    6. Diehlmann, Florian & Hiemsch, Patrick S. & Wiens, Marcus & Lüttenberg, Markus & Schultmann, Frank, 2020. "A novel approach to include social costs in humanitarian objective functions," Working Paper Series in Production and Energy 52, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Arslan, Okan & Kumcu, Gül Çulhan & Kara, Bahar Yetiş & Laporte, Gilbert, 2021. "The location and location-routing problem for the refugee camp network design," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 201-220.
    8. Gilani Larimi, Niloofar & Azhdari, Abolghasem & Ghousi, Rouzbeh & Du, Bo, 2022. "Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    9. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    10. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    11. Dayanna Rodrigues da Cunha Nunes & Orivalde Soares da Silva Júnior & Renata Albergaria de Mello Bandeira & Yesus Emmanuel Medeiros Vieira, 2023. "A Robust Stochastic Programming Model for the Well Location Problem: The Case of The Brazilian Northeast Region," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    12. Lu, Xiaohan & Cheng, Chun, 2021. "Locating facilities with resiliency to capacity failures and correlated demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    13. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Yusuf Kuvvetli, 2023. "A goal programming model for two-stage COVID19 test sampling centers location-allocation problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 1-20, March.
    15. Seyed Reza Abazari & Fariborz Jolai & Amir Aghsami, 2022. "Designing a humanitarian relief network considering governmental and non-governmental operations under uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1430-1452, June.
    16. Zhang, Yuwei & Li, Zhenping & Zhao, Yuwei, 2023. "Multi-mitigation strategies in medical supplies for epidemic outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    17. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    18. Dalal, Jyotirmoy, 2022. "Food donation management under supply and demand uncertainties in COVID-19: A robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    2. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    3. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    4. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    5. Paul, Jomon Aliyas & Wang, Xinfang (Jocelyn), 2015. "Robust optimization for United States Department of Agriculture food aid bid allocations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 129-146.
    6. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    7. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    8. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Optimal location, capacity and timing of stockpiles for improved hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 174(C), pages 11-28.
    10. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    11. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    12. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    13. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    14. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    15. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    16. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    17. Yanyan Wang & Baiqing Sun, 2022. "Multiperiod optimal emergency material allocation considering road network damage and risk under uncertain conditions," Operational Research, Springer, vol. 22(3), pages 2173-2208, July.
    18. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    19. Renata Turkeš & Kenneth Sörensen & Daniel Palhazi Cuervo, 2021. "A matheuristic for the stochastic facility location problem," Journal of Heuristics, Springer, vol. 27(4), pages 649-694, August.
    20. Hasti Seraji & Reza Tavakkoli-Moghaddam & Sobhan Asian & Harpreet Kaur, 2022. "An integrative location-allocation model for humanitarian logistics with distributive injustice and dissatisfaction under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 211-257, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:119:y:2019:i:c:p:139-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.