IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v26y2024i3d10.1057_s41278-023-00264-y.html
   My bibliography  Save this article

Identification of shipping schedule cancellations with AIS data: an application to the Europe-Far East route before and during the COVID-19 pandemic

Author

Listed:
  • Carlos Pais-Montes

    (University of A Coruña)

  • Jean-Claude Thill

    (University of North Carolina at Charlotte)

  • David Guerrero

    (Université Gustave Eiffel, IFSTTAR, AME-SPLOTT)

Abstract

The COVID-19 pandemic caused severe disruptions throughout global supply chains. In response to this situation, container carriers had been cancelling services and port calls. The reasons behind the cancellations were diverse: restoring schedule reliability; coping with sudden demand decreases; or with severe port congestion. To fully understand the implications of this practice, it is crucial to have a robust measurement method. This paper presents a novel method to estimate the incidence of port call cancellations based on AIS data. A normal service is first defined, on the basis of the most frequent port call sequence, and deviations are measured subsequently. As a first glance at the unique value of this method, we apply it to the ports along the Europe-Far East route. A binomial logistic model expresses the probability a port is skipped, based on its own characteristics, the size of vessels, and the region in which the port is located. We find non-trivial effects related to vessel size. At the largest end of the vessel size scale, the ports attracting mega vessels (with a capacity above 15 K TEUs) were less affected by cancellations in 2018–2019. This relationship reversed during the 2020–2021 period, and handling mega vessels seemed to have become a burden for ports during the pandemic. Another important result of this study is that, before the COVID-19 pandemic, the rate of cancellations was much more uneven between world regions than after the COVID-19 outbreak. This study provides useful operational insights to port authorities and governments, enabling them to anticipate the effects of future crises.

Suggested Citation

  • Carlos Pais-Montes & Jean-Claude Thill & David Guerrero, 2024. "Identification of shipping schedule cancellations with AIS data: an application to the Europe-Far East route before and during the COVID-19 pandemic," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(3), pages 490-508, September.
  • Handle: RePEc:pal:marecl:v:26:y:2024:i:3:d:10.1057_s41278-023-00264-y
    DOI: 10.1057/s41278-023-00264-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-023-00264-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-023-00264-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirzka, Christopher & Acciaro, Michele, 2022. "Global shipping network dynamics during the COVID-19 pandemic's initial phases," Journal of Transport Geography, Elsevier, vol. 99(C).
    2. César Ducruet & Sung-Woo Lee & Adolf K.Y. Ng, 2010. "Centrality and vulnerability in liner shipping networks: revisiting the Northeast Asian port hierarchy," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(1), pages 17-36, January.
    3. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    4. Xumao Li & Chengjin Wang & César Ducruet, 2021. "Cruise trajectory network and seasonality: empirical evidence from Queen Elizabeth cruise," Maritime Policy & Management, Taylor & Francis Journals, vol. 48(2), pages 283-298, February.
    5. Pais Montes, Carlos & Freire Seoane, Maria Jesus & González Laxe, Fernando, 2012. "General cargo and containership emergent routes: A complex networks description," Transport Policy, Elsevier, vol. 24(C), pages 126-140.
    6. Theo Notteboom & Thanos Pallis & Jean-Paul Rodrigue, 2021. "Disruptions and resilience in global container shipping and ports: the COVID-19 pandemic versus the 2008–2009 financial crisis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 179-210, June.
    7. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Post-Print halshs-02588551, HAL.
    8. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    9. Claudio Ferrari & Alessio Tei, 2020. "Effects of BRI strategy on Mediterranean shipping transport," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-18, December.
    10. Guerrero, David & Letrouit, Lucie & Pais-Montes, Carlos, 2022. "The container transport system during Covid-19: An analysis through the prism of complex networks," Transport Policy, Elsevier, vol. 115(C), pages 113-125.
    11. Jasper Verschuur & Elco E Koks & Jim W Hall, 2021. "Global economic impacts of COVID-19 lockdown measures stand out in high-frequency shipping data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-16, April.
    12. Pan Sheng & Jingbo Yin, 2018. "Extracting Shipping Route Patterns by Trajectory Clustering Model Based on Automatic Identification System Data," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    13. Dong-Joon Kang & Su-Han Woo, 2017. "Liner shipping networks, port characteristics and the impact on port performance," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 274-295, June.
    14. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc-Antoine Faure & Bárbara Polo Martin & Fabio Cremaschini & César Ducruet, 2024. "Shipping Trade and Geopolitical Turmoils: The Case of the Ukrainian Maritime Network," EconomiX Working Papers 2024-24, University of Paris Nanterre, EconomiX.
    2. Dirzka, Christopher & Acciaro, Michele, 2022. "Global shipping network dynamics during the COVID-19 pandemic's initial phases," Journal of Transport Geography, Elsevier, vol. 99(C).
    3. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    4. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    5. Nguyen, Phong-Nha & Kim, Hwayoung, 2024. "The effects of the COVID-19 pandemic on connectivity, operational efficiency, and resilience of major container ports in Southeast Asia," Journal of Transport Geography, Elsevier, vol. 116(C).
    6. Guerrero, David & Letrouit, Lucie & Pais-Montes, Carlos, 2022. "The container transport system during Covid-19: An analysis through the prism of complex networks," Transport Policy, Elsevier, vol. 115(C), pages 113-125.
    7. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    8. J. Verschuur & E. E. Koks & J. W. Hall, 2022. "Ports’ criticality in international trade and global supply-chains," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Nguyen Tran & Hans-Dietrich Haasis, 2014. "Empirical analysis of the container liner shipping network on the East-West corridor (1995–2011)," Netnomics, Springer, vol. 15(3), pages 121-153, November.
    10. Olabisi Michael Olapoju, 2023. "Appraising the impact of COVID-19 on trading volume of selected vessel types in sub-Saharan Africa," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-12, December.
    11. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    12. Wu, Jiaxin & Lu, Jing & Zhang, Lingye & Fan, Hanwen, 2024. "Spatial heterogeneity among different-sized port communities in directed-weighted global liner shipping network," Journal of Transport Geography, Elsevier, vol. 114(C).
    13. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    14. Tovar, Beatriz & Hernández, Rubén & Rodríguez-Déniz, Héctor, 2015. "Container port competitiveness and connectivity: The Canary Islands main ports case," Transport Policy, Elsevier, vol. 38(C), pages 40-51.
    15. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Zhang, Qiang & Pu, Shunhao & Luo, Lihua & Liu, Zhichao & Xu, Jie, 2022. "Revisiting important ports in container shipping networks: A structural hole-based approach," Transport Policy, Elsevier, vol. 126(C), pages 239-248.
    17. Xu, Mengqiao & Li, Zhenfu & Shi, Yanlei & Zhang, Xiaoling & Jiang, Shufei, 2015. "Evolution of regional inequality in the global shipping network," Journal of Transport Geography, Elsevier, vol. 44(C), pages 1-12.
    18. Ducruet, César & Itoh, Hidekazu, 2022. "The spatial determinants of innovation diffusion: Evidence from global shipping networks," Journal of Transport Geography, Elsevier, vol. 101(C).
    19. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    20. Zhicheng Shen & Xinliang Xu & Jiahao Li & Shikuan Wang, 2019. "Vulnerability of the Maritime Network to Tropical Cyclones in the Northwest Pacific and the Northern Indian Ocean," Sustainability, MDPI, vol. 11(21), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:26:y:2024:i:3:d:10.1057_s41278-023-00264-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.