IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i12p2795-d189230.html
   My bibliography  Save this article

An Optimization Model for a Wetland Restoration Project under Uncertainty

Author

Listed:
  • Baofeng Cai

    (College of Environment and Resources, Jilin University, Changchun 130012, China)

  • Yang Zhang

    (College of Economics and Management, China Jiliang University, Hangzhou 310018, China)

  • Xianen Wang

    (College of Environment and Resources, Jilin University, Changchun 130012, China)

  • Yu Li

    (MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China)

Abstract

Restoring natural wetlands with conservation projects is an urgent task for human well-being. This paper introduces the Interval linear programming (ILP) method in wetland restoration projects for the first time and builds an optimization model. The purpose of the optimization model is to find an optimal restoration measures allocation pattern that can minimize the total investment in wetland restoration projects and obtain additional ecological environment and socio-economic benefits. The optimization model can also decrease the influence of interval uncertainty in the system by expressing the executed solution as interval numbers with an upper bound and a lower bound. The result of the optimization model for the wetland restoration project indicated a range of 6.84%–15.43% reduction on comparison with the original scheme which verified the effectiveness and validity of this optimization model. Our findings indicate that higher ecological and social benefits of wetland restoration projects can be achieved with lower restoration investment on the application of the reasonable and optimal restoration measures allocation pattern by the optimization model. The results of interval solutions can provide guidance for project managers to select a satisfactory decision-making plan by adjusting the decision variables in the interval solutions according to the practical situation. It can be seen that reeds were suggested to be planted over 46.75 km 2 , with the same lower bound and higher bound. Meanwhile, populus euphratica, and dryland willow were recommended to be planted in a mixed forest pattern within the interval of 30.54 km 2 to 37.25 km 2 , and so forth. With the optimal solutions obtained from the model, the total project investment would be in the range of 2193.14 (10 4 CNY) to 2416.01 (10 4 CNY). Future improvements of our optimization model in wetland restoration projects should consider other kinds of uncertainties in the system such as stochastic uncertainties, fuzzy uncertainties, and integrated uncertainties.

Suggested Citation

  • Baofeng Cai & Yang Zhang & Xianen Wang & Yu Li, 2018. "An Optimization Model for a Wetland Restoration Project under Uncertainty," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2795-:d:189230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/12/2795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/12/2795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaban Boloukat, Mohammad Hadi & Akbari Foroud, Asghar, 2016. "Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming," Energy, Elsevier, vol. 113(C), pages 776-787.
    2. Zeng, L. & Chen, G.Q., 2011. "Ecological degradation and hydraulic dispersion of contaminant in wetland," Ecological Modelling, Elsevier, vol. 222(2), pages 293-300.
    3. Du, Xuejun & Huang, Zhonghua, 2018. "Spatial and temporal effects of urban wetlands on housing prices: Evidence from Hangzhou, China," Land Use Policy, Elsevier, vol. 73(C), pages 290-298.
    4. Xu, Xibao & Jiang, Bo & Tan, Yan & Costanza, Robert & Yang, Guishan, 2018. "Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions," Ecosystem Services, Elsevier, vol. 33(PA), pages 19-28.
    5. McInnes, R.J. & Everard, M., 2017. "Rapid Assessment of Wetland Ecosystem Services (RAWES): An example from Colombo, Sri Lanka," Ecosystem Services, Elsevier, vol. 25(C), pages 89-105.
    6. Zamberletti, Patrizia & Zaffaroni, Marta & Accatino, Francesco & Creed, Irena F. & De Michele, Carlo, 2018. "Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes," Ecological Modelling, Elsevier, vol. 384(C), pages 119-127.
    7. Kadykalo, Andrew N. & Findlay, C. Scott, 2016. "The flow regulation services of wetlands," Ecosystem Services, Elsevier, vol. 20(C), pages 91-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Yang & Wei He & Yu Li, 2022. "Optimization of Ecological Water Replenishment Scheme Based on the Interval Fuzzy Two-Stage Stochastic Programming Method: Boluo Lake National Nature Reserve, Jilin Province, China," IJERPH, MDPI, vol. 19(9), pages 1-17, April.
    2. Xianrui Liao & Chong Meng & Zhixing Ren & Wenjin Zhao, 2020. "Optimization of Ecological Water Supplement Scheme for Improved Suitable Habitat Area for Rare Migratory Birds in Nature Reserves Using Interval-Parameter Fuzzy Two-Stage Stochastic Programming Model," IJERPH, MDPI, vol. 17(20), pages 1-20, October.
    3. Yang Zhang & Jing Shen, 2021. "Wetland Restoration Planning Approach Based on Interval Fuzzy Linear Programming under Uncertainty," IJERPH, MDPI, vol. 18(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Baggethun, Erik & Tudor, Marian & Doroftei, Mihai & Covaliov, Silviu & Năstase, Aurel & Onără, Dalia-Florentina & Mierlă, Marian & Marinov, Mihai & Doroșencu, Alexandru-Cătălin & Lupu, Gabriel &, 2019. "Changes in ecosystem services from wetland loss and restoration: An ecosystem assessment of the Danube Delta (1960–2010)," Ecosystem Services, Elsevier, vol. 39(C).
    2. Yin, X.A. & Yang, Z.F., 2013. "A reservoir operating model for directing water supply to humans, wetlands, and cones of depression," Ecological Modelling, Elsevier, vol. 252(C), pages 114-120.
    3. Hyeseon Choi & Nash Jett DG. Reyes & Minsu Jeon & Lee-Hyung Kim, 2021. "Constructed Wetlands in South Korea: Current Status and Performance Assessment," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    4. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    5. Nazar, Mehrdad Setayesh & Jafarpour, Pourya & Shafie-khah, Miadreza & Catalão, João P.S., 2024. "Optimal planning of self-healing multi-carriers energy systems considering integration of smart buildings and parking lots energy resources," Energy, Elsevier, vol. 286(C).
    6. Yanhui Guo & Yongfeng Xu & Chenming Zhu & Pingping Li & Yongli Zhu & Jiangang Han, 2022. "How Does Adjacent Land Use Influence Sediment Metals Content and Potential Ecological Risk in the Hongze Lake Wetland?," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    7. Chucai Peng & Yang Xiang & Luxia Chen & Yangyang Zhang & Zhixiang Zhou, 2023. "The Impact of the Type and Abundance of Urban Blue Space on House Prices: A Case Study of Eight Megacities in China," Land, MDPI, vol. 12(4), pages 1-27, April.
    8. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    9. Wenlong Wang & Mingzhu Sun & Yi Li & Siqi Zhao & Zhenming Zhang & Xiaofeng Luan, 2022. "Multi-Level Comprehensive Assessment of Constructed Wetland Ecosystem Health: A Case Study of Cuihu Wetland in Beijing, China," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    10. Xianrui Liao & Chong Meng & Zhixing Ren & Wenjin Zhao, 2020. "Optimization of Ecological Water Supplement Scheme for Improved Suitable Habitat Area for Rare Migratory Birds in Nature Reserves Using Interval-Parameter Fuzzy Two-Stage Stochastic Programming Model," IJERPH, MDPI, vol. 17(20), pages 1-20, October.
    11. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).
    12. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    13. Pattison-Williams, John K. & Pomeroy, John W. & Badiou, Pascal & Gabor, Shane, 2018. "Wetlands, Flood Control and Ecosystem Services in the Smith Creek Drainage Basin: A Case Study in Saskatchewan, Canada," Ecological Economics, Elsevier, vol. 147(C), pages 36-47.
    14. Jiang Li & Qiao Pan & You Peng & Tao Feng & Shaobo Liu & Xiaoxi Cai & Chixing Zhong & Yicheng Yin & Wenbo Lai, 2020. "Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    15. Chen, Chundi & Wang, Yuncai & Jia, Junsong & Mao, Longfei & Meurk, Colin D., 2019. "Ecosystem services mapping in practice: A Pasteur’s quadrant perspective," Ecosystem Services, Elsevier, vol. 40(C).
    16. Yongxiao Ge & Na Wu & Jilili Abuduwaili & Rashid Kulmatov & Gulnura Issanova & Galymzhan Saparov, 2022. "Identifying Seasonal and Diurnal Variations and the Most Frequently Impacted Zone of Aerosols in the Aral Sea Region," IJERPH, MDPI, vol. 19(21), pages 1-21, October.
    17. Mark Everard & Gaurav Kataria & Smita Kumar & Nishikant Gupta, 2021. "Assessing livelihood-ecosystem interdependencies and natural resource governance in a tribally controlled region of India’s north-eastern middle Himalayas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7772-7790, May.
    18. Aryal, Kishor & Ojha, Bhuwan Raj & Maraseni, Tek, 2021. "Perceived importance and economic valuation of ecosystem services in Ghodaghodi wetland of Nepal," Land Use Policy, Elsevier, vol. 106(C).
    19. Xu, Xibao & Jiang, Bo & Tan, Yan & Costanza, Robert & Yang, Guishan, 2018. "Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions," Ecosystem Services, Elsevier, vol. 33(PA), pages 19-28.
    20. Liu, Yuan & He, Li & Shen, Jing, 2017. "Optimization-based provincial hybrid renewable and non-renewable energy planning – A case study of Shanxi, China," Energy, Elsevier, vol. 128(C), pages 839-856.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2795-:d:189230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.