IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2297-d332786.html
   My bibliography  Save this article

Identifying Urban Flood Regulation Priority Areas in Beijing Based on an Ecosystem Services Approach

Author

Listed:
  • Xiaoyong Li

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wenhui Kuang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Fengyun Sun

    (School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China)

Abstract

Climate change and rapid urbanization have severe impacts on urban flood regulation ecosystem services (UFRES). Quantifying the UFRES has attracted increasing attention for urban sustainable development. However, few studies have focused on how to identify urban flood regulation priority areas. In this study, we simulated urban surface runoff by using the soil conservation services-curve number model, and quantified UFRES supply and demand by using relative indicators (i.e., runoff reduction ratio and urban vulnerability) at the subdistrict scale in Beijing, China. Then, an urban flood regulation priority index was developed by integrating UFRES demand and supply, and further used to identify priority areas. The results show that the mean runoff reduction ratio in Beijing decreased from 38.70% (for a 1-year rainfall return period) to 24.74% (for a 100-year rainfall return period). Subdistricts with low UFRES supply were mainly located in the urban central area and the southeastern zone, while subdistricts with high UFRES demand were mainly located in the urban central region. Meanwhile, places with high priority for flood regulation were mainly located in the inner city, and low priority areas were mainly located in northwestern, southwestern, and northeastern Beijing. Our results also imply that the urban flood regulation priority index is an effective indicator to identify urban flood regulation priority areas. These findings could provide urban planners with a comprehensive understanding of UFRES and scientific guidance to improve them.

Suggested Citation

  • Xiaoyong Li & Wenhui Kuang & Fengyun Sun, 2020. "Identifying Urban Flood Regulation Priority Areas in Beijing Based on an Ecosystem Services Approach," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2297-:d:332786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Sun & Xuebin Zhang & Guoyu Ren & Francis W. Zwiers & Ting Hu, 2016. "Contribution of urbanization to warming in China," Nature Climate Change, Nature, vol. 6(7), pages 706-709, July.
    2. Kadykalo, Andrew N. & Findlay, C. Scott, 2016. "The flow regulation services of wetlands," Ecosystem Services, Elsevier, vol. 20(C), pages 91-103.
    3. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    4. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    5. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    6. Yang Bai & Christina P. Wong & Bo Jiang & Alice C. Hughes & Min Wang & Qing Wang, 2018. "Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    7. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    8. Turkelboom, Francis & Leone, Michael & Jacobs, Sander & Kelemen, Eszter & García-Llorente, Marina & Baró, Francesc & Termansen, Mette & Barton, David N. & Berry, Pam & Stange, Erik & Thoonen, Marijke , 2018. "When we cannot have it all: Ecosystem services trade-offs in the context of spatial planning," Ecosystem Services, Elsevier, vol. 29(PC), pages 566-578.
    9. Luederitz, Christopher & Brink, Ebba & Gralla, Fabienne & Hermelingmeier, Verena & Meyer, Moritz & Niven, Lisa & Panzer, Lars & Partelow, Stefan & Rau, Anna-Lena & Sasaki, Ryuei & Abson, David J. & La, 2015. "A review of urban ecosystem services: six key challenges for future research," Ecosystem Services, Elsevier, vol. 14(C), pages 98-112.
    10. Maragno, Denis & Gaglio, Mattias & Robbi, Martina & Appiotti, Federica & Fano, Elisa Anna & Gissi, Elena, 2018. "Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows," Ecological Modelling, Elsevier, vol. 386(C), pages 1-10.
    11. Tammi, Ilpo & Mustajärvi, Kaisa & Rasinmäki, Jussi, 2017. "Integrating spatial valuation of ecosystem services into regional planning and development," Ecosystem Services, Elsevier, vol. 26(PB), pages 329-344.
    12. Kremer, Peleg & Hamstead, Zoé A. & McPhearson, Timon, 2016. "The value of urban ecosystem services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios," Environmental Science & Policy, Elsevier, vol. 62(C), pages 57-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Wang & Qi Fu & Tinghui Wang & Mengfan Gao & Jinhua Chen, 2022. "Multiscale Characteristics and Drivers of the Bundles of Ecosystem Service Budgets in the Su-Xi-Chang Region, China," IJERPH, MDPI, vol. 19(19), pages 1-26, October.
    2. Jian Tian & Suiping Zeng & Jian Zeng & Feiyang Jiang, 2022. "Assessment of Supply and Demand of Regional Flood Regulation Ecosystem Services and Zoning Management in Response to Flood Disasters: A Case Study of Fujian Delta," IJERPH, MDPI, vol. 20(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    2. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    3. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    4. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    5. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    6. Hengyu Pan & Yong Geng & Ji Han & Cheng Huang & Wenyi Han & Zhuang Miao, 2020. "Emergy Based Decoupling Analysis of Ecosystem Services on Urbanization: A Case of Shanghai, China," Energies, MDPI, vol. 13(22), pages 1-25, November.
    7. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    8. Lan Feng & Pan Hu & Haisen Wang & Ming-ming Chen & Jiangang Han, 2022. "Improving City Water Quality through Pollution Reduction with Urban Floodgate Infrastructure and Design Solutions: A Case Study in Wuxi, China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    9. Calzolari, C. & Tarocco, P. & Lombardo, N. & Marchi, N. & Ungaro, F., 2020. "Assessing soil ecosystem services in urban and peri-urban areas: From urban soils survey to providing support tool for urban planning," Land Use Policy, Elsevier, vol. 99(C).
    10. Mikko Kurttila & Arto Haara & Artti Juutinen & Jouni Karhu & Paavo Ojanen & Jouni Pykäläinen & Miia Saarimaa & Oili Tarvainen & Sakari Sarkkola & Anne Tolvanen, 2020. "Applying a Multi-Criteria Project Portfolio Tool in Selecting Energy Peat Production Areas," Sustainability, MDPI, vol. 12(5), pages 1-16, February.
    11. Liang, Xinyuan & Jin, Xiaobin & He, Jie & Wang, Xiaorui & Xu, Cuilan & Qiao, Guoliang & Zhang, Xiaolin & Zhou, Yinkang, 2022. "Impacts of land management practice strategy on regional ecosystems: Enlightenment from ecological redline adjustment in Jiangsu, China," Land Use Policy, Elsevier, vol. 119(C).
    12. Yui Omori, 2021. "Preference Heterogeneity of Coastal Gray, Green, and Hybrid Infrastructure against Sea-Level Rise: A Choice Experiment Application in Japan," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    13. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    14. Philip Bubeck & Lisa Dillenardt & Lorenzo Alfieri & Luc Feyen & Annegret H. Thieken & Patric Kellermann, 2019. "Global warming to increase flood risk on European railways," Climatic Change, Springer, vol. 155(1), pages 19-36, July.
    15. Silvia Ronchi, 2021. "Ecosystem Services for Planning: A Generic Recommendation or a Real Framework? Insights from a Literature Review," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    16. Patrycia Brzoska & Aiga Spāģe, 2020. "From City- to Site-Dimension: Assessing the Urban Ecosystem Services of Different Types of Green Infrastructure," Land, MDPI, vol. 9(5), pages 1-18, May.
    17. Hefei Huang & Huijuan Cui & Quansheng Ge, 2021. "Assessment of potential risks induced by increasing extreme precipitation under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2059-2079, September.
    18. Yijia Huang & Jiaqi Zhang & Jinqun Wu, 2020. "Integrating Sustainability Assessment into Decoupling Analysis: A Focus on the Yangtze River Delta Urban Agglomerations," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    19. Pulighe, Giuseppe & Fava, Francesco & Lupia, Flavio, 2016. "Insights and opportunities from mapping ecosystem services of urban green spaces and potentials in planning," Ecosystem Services, Elsevier, vol. 22(PA), pages 1-10.
    20. Juutinen, Artti & Saarimaa, Miia & Ojanen, Paavo & Sarkkola, Sakari & Haara, Arto & Karhu, Jouni & Nieminen, Mika & Minkkinen, Kari & Penttilä, Timo & Laatikainen, Matti & Tolvanen, Anne, 2019. "Trade-offs between economic returns, biodiversity, and ecosystem services in the selection of energy peat production sites," Ecosystem Services, Elsevier, vol. 40(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2297-:d:332786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.