IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i10p2200-d174355.html
   My bibliography  Save this article

The Pertinence of Microwave Irradiated Coconut Shell Bio-Sorbent for Wastewater Decolourization: Structural Morphology and Adsorption Optimization Using the Response Surface Method (RSM)

Author

Listed:
  • Mohammed Abdulsalam

    (Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
    Department of Agricultural and Bioresources Engineering, Ahmadu Bello University, Zaria 810222, Nigeria)

  • Hasfalina Che Man

    (Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia)

  • Aida Isma Idris

    (Department of Chemical Engineering, Segi University, Kota Damansara Selangor 47810, Malaysia)

  • Zurina Zainal Abidin

    (Departments of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia)

  • Khairul Faezah Yunos

    (Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia)

Abstract

Palm oil mill effluent contains carcinogenic coloured compounds that are difficult to separate due to their aromatic structure. Though colour treatment using adsorption processes at lower pH (<4) have been reported effectual, due to its acidity the remediated effluent poses an environmental hazard as a result. Thus, the current study focused on achieving decolourization at neutral pH by enhancing the morphology of the coconut shell activated carbon (CSAC) using N 2 as activating-agent with microwave irradiation heating. The microwave pretreated and non-pretreated CSAC were characterized using scanned electron microscopy (SEM), energy dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) analysis. A significant modification in the porous structure with a 66.62% increase in the specific surface area was achieved after the pretreatment. The adsorption experimental matrix was developed using the central composite design to investigate the colour adsorption performance under varied pH (6–7), dosage (2–6 g) and contact time (10–100 min). At optimum conditions of neutral pH (7), 3.208 g dosage and contact time of 35 min, the percentage of colour removal was 96.29% with negligible differences compared with the predicted value, 95.855%. The adsorption equilibrium capacity of 1430.1 ADMI × mL/g was attained at the initial colour concentration of 2025 ADMI at 27 °C. The experimental data fitted better with the Freundlich isotherm model with R 2 0.9851.

Suggested Citation

  • Mohammed Abdulsalam & Hasfalina Che Man & Aida Isma Idris & Zurina Zainal Abidin & Khairul Faezah Yunos, 2018. "The Pertinence of Microwave Irradiated Coconut Shell Bio-Sorbent for Wastewater Decolourization: Structural Morphology and Adsorption Optimization Using the Response Surface Method (RSM)," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2200-:d:174355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/10/2200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/10/2200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tee, Pei Fang & Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Rashid, Nur Khairunnisa Abdul & Amin, Mohamed Afizal Mohamed & Nolasco-Hipolito, Cirilo & Bujang, Kopli, 2016. "Review on hybrid energy systems for wastewater treatment and bio-energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 235-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Hazwan Hamzah & Muhammad Fitri Ahmad Asri & Hasfalina Che Man & Abdulsalam Mohammed, 2019. "Prospective Application of Palm Oil Mill Boiler Ash as a Biosorbent: Effect of Microwave Irradiation and Palm Oil Mill Effluent Decolorization by Adsorption," IJERPH, MDPI, vol. 16(18), pages 1-18, September.
    2. Mohammed Umar Abba & Hasfalina Che Man & Raba’ah Syahidah Azis & Aida Isma Idris & Muhammad Hazwan Hamzah & Mohammed Abdulsalam, 2021. "Synthesis of Nano-Magnetite from Industrial Mill Chips for the Application of Boron Removal: Characterization and Adsorption Efficacy," IJERPH, MDPI, vol. 18(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    2. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    3. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    4. Ahmed, Shams Forruque & Mofijur, M. & Islam, Nafisa & Parisa, Tahlil Ahmed & Rafa, Nazifa & Bokhari, Awais & Klemeš, Jiří Jaromír & Indra Mahlia, Teuku Meurah, 2022. "Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater," Energy, Elsevier, vol. 254(PA).
    5. Tamjid Shabestari, Sara & Kasaeian, Alibakhsh & Vaziri Rad, Mohammad Amin & Forootan Fard, Habib & Yan, Wei-Mon & Pourfayaz, Fathollah, 2022. "Techno-financial evaluation of a hybrid renewable solution for supplying the predicted power outages by machine learning methods in rural areas," Renewable Energy, Elsevier, vol. 194(C), pages 1303-1325.
    6. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    7. Shafaqat Ali & Zohaib Abbas & Muhammad Rizwan & Ihsan Elahi Zaheer & İlkay Yavaş & Aydın Ünay & Mohamed M. Abdel-DAIM & May Bin-Jumah & Mirza Hasanuzzaman & Dimitris Kalderis, 2020. "Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review," Sustainability, MDPI, vol. 12(5), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2200-:d:174355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.