IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v129y2018ipbp824-829.html
   My bibliography  Save this article

Feasible use of microbial fuel cells for pollution treatment

Author

Listed:
  • Hu, Jianjun
  • Zhang, Quanguo
  • Lee, Duu-Jong
  • Ngo, Huu Hao

Abstract

The microbial fuel cells (MFC) can directly transform chemical energy in feed substance to electricity by anodic aspiration pathways. This mini review provides an order-of-magnitude argument that MFC has much lower catalyst density at electrode surface and much higher diffusional resistance for substrates than the chemical fuel cell, the former should not be used as an energy generation unit; rather, it should be applied in low power density level applications such as biofilm wastewater treatment. The literature studies using MFC for pollution treatment are discussed.

Suggested Citation

  • Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
  • Handle: RePEc:eee:renene:v:129:y:2018:i:pb:p:824-829
    DOI: 10.1016/j.renene.2017.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeruva, Dileep Kumar & Velvizhi, G. & Mohan, S. Venkata, 2016. "Coupling of aerobic/anoxic and bioelectrogenic processes for treatment of pharmaceutical wastewater associated with bioelectricity generation," Renewable Energy, Elsevier, vol. 98(C), pages 171-177.
    2. Tee, Pei Fang & Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Rashid, Nur Khairunnisa Abdul & Amin, Mohamed Afizal Mohamed & Nolasco-Hipolito, Cirilo & Bujang, Kopli, 2016. "Review on hybrid energy systems for wastewater treatment and bio-energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 235-246.
    3. Nagendranatha Reddy, C. & Venkata Mohan, S., 2016. "Integrated bio-electrogenic process for bioelectricity production and cathodic nutrient recovery from azo dye wastewater," Renewable Energy, Elsevier, vol. 98(C), pages 188-196.
    4. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    5. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    6. Kumar, Ravinder & Singh, Lakhveer & Zularisam, A.W., 2016. "Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1322-1336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ullah, Zia & Zeshan,, 2024. "Effect of catholyte on performance of photosynthetic microbial fuel cell for wastewater treatment and energy recovery," Renewable Energy, Elsevier, vol. 221(C).
    2. Wang, Fang & Zhang, Deli & Shen, Xiuli & Liu, Weidong & Yi, Weiming & Li, Zhihe & Liu, Shanjian, 2019. "Synchronously electricity generation and degradation of biogas slurry using microbial fuel cell," Renewable Energy, Elsevier, vol. 142(C), pages 158-166.
    3. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Birjandi, Noushin & Younesi, Habibollah & Ghoreyshi, Ali Asghar & Rahimnejad, Mostafa, 2020. "Enhanced medicinal herbs wastewater treatment in continuous flow bio-electro-Fenton operations along with power generation," Renewable Energy, Elsevier, vol. 155(C), pages 1079-1090.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Shams Forruque & Mofijur, M. & Islam, Nafisa & Parisa, Tahlil Ahmed & Rafa, Nazifa & Bokhari, Awais & Klemeš, Jiří Jaromír & Indra Mahlia, Teuku Meurah, 2022. "Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater," Energy, Elsevier, vol. 254(PA).
    2. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    3. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    4. Ismail, Zainab Z. & Habeeb, Ali A., 2017. "Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers," Renewable Energy, Elsevier, vol. 101(C), pages 1256-1265.
    5. Khandaker, Shahjalal & Bashar, M Mahbubul & Islam, Aminul & Hossain, Md. Tofazzal & Teo, Siow Hwa & Awual, Md. Rabiul, 2022. "Sustainable energy generation from textile biowaste and its challenges: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. AlSayed, Ahmed & Soliman, Moomen & Eldyasti, Ahmed, 2020. "Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Wu, Shiqiang & Patil, Sunil A. & Chen, Shuiliang, 2018. "Auto-feeding microbial fuel cell inspired by transpiration of plants," Applied Energy, Elsevier, vol. 225(C), pages 934-939.
    8. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    9. Karamanev, Dimitre & Pupkevich, Victor & Penev, Kalin & Glibin, Vassili & Gohil, Jay & Vajihinejad, Vahid, 2017. "Biological conversion of hydrogen to electricity for energy storage," Energy, Elsevier, vol. 129(C), pages 237-245.
    10. Jadhav, Dipak A. & Ghosh Ray, Sreemoyee & Ghangrekar, Makarand M., 2017. "Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1022-1031.
    11. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    12. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    13. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    16. N. Evelin Paucar & Chikashi Sato, 2022. "Coupling Microbial Fuel Cell and Hydroponic System for Electricity Generation, Organic Removal, and Nutrient Recovery via Plant Production from Wastewater," Energies, MDPI, vol. 15(23), pages 1-19, December.
    17. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    18. Hani Alshahrani & Noman Islam & Darakhshan Syed & Adel Sulaiman & Mana Saleh Al Reshan & Khairan Rajab & Asadullah Shaikh & Jaweed Shuja-Uddin & Aadar Soomro, 2023. "Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues," Energies, MDPI, vol. 16(3), pages 1-24, February.
    19. Chao Li & Kang Zhou & Hanyue He & Jiashun Cao & Shihua Zhou, 2020. "Adding Zero-Valent Iron to Enhance Electricity Generation during MFC Start-Up," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    20. Rajat Kumar Sharma & Mohammad Ali Nazari & Juma Haydary & Triveni Prasad Singh & Sandip Mandal, 2023. "A Review on Advanced Processes of Biohydrogen Generation from Lignocellulosic Biomass with Special Emphasis on Thermochemical Conversion," Energies, MDPI, vol. 16(17), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:129:y:2018:i:pb:p:824-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.