IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i8p834-d105808.html
   My bibliography  Save this article

Schools, Air Pollution, and Active Transportation: An Exploratory Spatial Analysis of Calgary, Canada

Author

Listed:
  • Stefania Bertazzon

    (Department of Geography, University of Calgary, University of Calgary, Calgary, AB T2N 1N4, Canada)

  • Rizwan Shahid

    (Department of Geography, University of Calgary, University of Calgary, Calgary, AB T2N 1N4, Canada
    Alberta Health Services, Calgary, AB T2W 3N2, Canada)

Abstract

An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children.

Suggested Citation

  • Stefania Bertazzon & Rizwan Shahid, 2017. "Schools, Air Pollution, and Active Transportation: An Exploratory Spatial Analysis of Calgary, Canada," IJERPH, MDPI, vol. 14(8), pages 1-16, July.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:8:p:834-:d:105808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/8/834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/8/834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saelens, B.E. & Sallis, J.F. & Black, J.B. & Chen, D., 2003. "Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1552-1558.
    2. Shuwei Wang & Lishan Sun & Jian Rong & Zifan Yang, 2014. "Transit Traffic Analysis Zone Delineating Method Based on Thiessen Polygon," Sustainability, MDPI, vol. 6(4), pages 1-12, April.
    3. Luc Anselin & Sergio J. Rey, 2010. "Perspectives on Spatial Data Analysis," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 1-20, Springer.
    4. Luc Anselin & Arthur Getis, 2010. "Spatial Statistical Analysis and Geographic Information Systems," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 35-47, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoxiao Liu & Stefania Bertazzon, 2017. "Exploratory Temporal and Spatial Analysis of Myocardial Infarction Hospitalizations in Calgary, Canada," IJERPH, MDPI, vol. 14(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang Hou & Xuxiang Li & Jing Zhang, 2015. "GIS Analysis of Changes in Ecological Vulnerability Using a SPCA Model in the Loess Plateau of Northern Shaanxi, China," IJERPH, MDPI, vol. 12(4), pages 1-14, April.
    2. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    3. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    4. Schmidtner, Eva & Lippert, Christian & Dabbert, Stephan, 2015. "Does Spatial Dependence Depend on Spatial Resolution? – An Empirical Analysis of Organic Farming in Southern Germany," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 64(03), September.
    5. Yaqing Liu & Hongbing Ouyang & Xiaolu Wei, 2021. "A Spatial Panel Structural Vector Autoregressive Model with Interactive Effects and Its Simulation," Mathematics, MDPI, vol. 9(8), pages 1-8, April.
    6. Anura Amarasinghe & Gerard D'Souza & Cheryl Brown & Tatiana Borisova, 2006. "A Spatial Analysis of Obesity in West Virginia," Working Papers Working Paper 2006-13, Regional Research Institute, West Virginia University.
    7. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    8. Spielman, Seth E. & Yoo, Eun-hye, 2009. "The spatial dimensions of neighborhood effects," Social Science & Medicine, Elsevier, vol. 68(6), pages 1098-1105, March.
    9. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    10. John I. Carruthers & Selma Hepp & Gerrit-Jan Knaap & Robert N. Renner, 2012. "The American Way of Land Use," International Regional Science Review, , vol. 35(3), pages 267-302, July.
    11. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    12. Mi Namgung & B. Elizabeth Mercado Gonzalez & Seungwoo Park, 2019. "The Role of Built Environment on Health of Older Adults in Korea: Obesity and Gender Differences," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    13. Oumarou Zallé & Idrissa M. Ouédraogo, 2021. "Spillover effects of corruption and democracy on territorial attractiveness of foreign direct investment in sub‐Saharan Africa," African Development Review, African Development Bank, vol. 33(4), pages 756-769, December.
    14. Courtney Coughenour & Hanns de la Fuente-Mella & Alexander Paz, 2019. "Analysis of Self-Reported Walking for Transit in a Sprawling Urban Metropolitan Area in the Western U.S," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    15. Eric T. H. Chan & Tim Schwanen & David Banister, 2021. "The role of perceived environment, neighbourhood characteristics, and attitudes in walking behaviour: evidence from a rapidly developing city in China," Transportation, Springer, vol. 48(1), pages 431-454, February.
    16. McNeill, Lorna Haughton & Kreuter, Matthew W. & Subramanian, S.V., 2006. "Social Environment and Physical activity: A review of concepts and evidence," Social Science & Medicine, Elsevier, vol. 63(4), pages 1011-1022, August.
    17. Fernando Fonseca & Escolástica Fernandes & Rui Ramos, 2022. "Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    18. repec:rri:wpaper:200613 is not listed on IDEAS
    19. Kent, Jennifer L. & Mulley, Corinne & Stevens, Nick, 2020. "Challenging policies that prohibit public transport use: Travelling with pets as a case study," Transport Policy, Elsevier, vol. 99(C), pages 86-94.
    20. Nijkamp Peter, 2012. "Behaviour of Humans and Behaviour of Models in Dynamic Space," Quaestiones Geographicae, Sciendo, vol. 31(2), pages 7-19, June.
    21. Victor O. Akande & Robert A.C. Ruiter & Stef P.J. Kremers, 2019. "Environmental and Motivational Determinants of Physical Activity among Canadian Inuit in the Arctic," IJERPH, MDPI, vol. 16(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:8:p:834-:d:105808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.