IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i8p9542-9561d54198.html
   My bibliography  Save this article

Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

Author

Listed:
  • Oyuna Tsydenova

    (Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanova st. 6, Ulan-Ude City 670047, Russia)

  • Valeriy Batoev

    (Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanova st. 6, Ulan-Ude City 670047, Russia)

  • Agniya Batoeva

    (Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Sakhyanova st. 6, Ulan-Ude City 670047, Russia)

Abstract

The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO 2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

Suggested Citation

  • Oyuna Tsydenova & Valeriy Batoev & Agniya Batoeva, 2015. "Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants," IJERPH, MDPI, vol. 12(8), pages 1-20, August.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:8:p:9542-9561:d:54198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/8/9542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/8/9542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanco, J. & Malato, S. & Fernández-Ibañez, P. & Alarcón, D. & Gernjak, W. & Maldonado, M.I., 2009. "Review of feasible solar energy applications to water processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1437-1445, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingbing Hu & Peng Zhang & Hui Liu & Songhu Yuan, 2022. "Quantification of the Influence of Citrate/Fe(II) Molar Ratio on Hydroxyl Radical Production and Pollutant Degradation during Fe(II)-Catalyzed O 2 and H 2 O 2 Oxidation Processes," IJERPH, MDPI, vol. 19(19), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    2. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    3. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    4. Palenzuela, Patricia & Zaragoza, Guillermo & Alarcón-Padilla, Diego C. & Guillén, Elena & Ibarra, Mercedes & Blanco, Julián, 2011. "Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions," Energy, Elsevier, vol. 36(8), pages 4950-4958.
    5. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Choi, Soon-Ho, 2017. "Thermal type seawater desalination with barometric vacuum and solar energy," Energy, Elsevier, vol. 141(C), pages 1332-1349.
    7. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    8. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    9. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    10. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    11. Huang, Huadong & Shan, Shiquan & Zhou, Zhijun, 2022. "Parametric optimization of a novel solar concentrating photovoltaic-near field thermophotovoltaic hybrid system based on cascade utilization of full-spectrum solar energy," Renewable Energy, Elsevier, vol. 196(C), pages 1443-1454.
    12. Pasqualetti, Martin J. & Haag, Susan, 2011. "A solar economy in the American Southwest: Critical next steps," Energy Policy, Elsevier, vol. 39(2), pages 887-893, February.
    13. Cavallaro, Fausto & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Mardani, Abbas, 2019. "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 258-270.
    14. Bora, Leena V. & Mewada, Rajubhai K., 2017. "Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1393-1421.
    15. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    16. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:8:p:9542-9561:d:54198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.