IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i3p2741-2763d33778.html
   My bibliography  Save this article

Clustering Multivariate Time Series Using Hidden Markov Models

Author

Listed:
  • Shima Ghassempour

    (School of Computing, Engineering and Mathematics, University of Western Sydney, Campbelltown, NSW 2751 , Australia
    Centre for Health Research, University of Western Sydney, Campbelltown, NSW 2751 , Australia)

  • Federico Girosi

    (Centre for Health Research, University of Western Sydney, Campbelltown, NSW 2751 , Australia)

  • Anthony Maeder

    (School of Computing, Engineering and Mathematics, University of Western Sydney, Campbelltown, NSW 2751 , Australia
    Centre for Health Research, University of Western Sydney, Campbelltown, NSW 2751 , Australia)

Abstract

In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs), where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.

Suggested Citation

  • Shima Ghassempour & Federico Girosi & Anthony Maeder, 2014. "Clustering Multivariate Time Series Using Hidden Markov Models," IJERPH, MDPI, vol. 11(3), pages 1-23, March.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:3:p:2741-2763:d:33778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/3/2741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/3/2741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeng‐Min Chiou & Pai‐Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699, September.
    2. Konrad Banachewicz & André Lucas & Aad van der Vaart, 2008. "Modelling Portfolio Defaults Using Hidden Markov Models with Covariates," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 155-171, March.
    3. Visser, Ingmar & Speekenbrink, Maarten, 2010. "depmixS4: An R Package for Hidden Markov Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaqi Liu & Xiaoyuan Wang, 2020. "Differences in Driving Intention Transitions Caused by Driver’s Emotion Evolutions," IJERPH, MDPI, vol. 17(19), pages 1-22, September.
    2. Pavel S. Stashevsky & Irina N. Yakovina & Tania M. Alarcon Falconi & Elena N. Naumova, 2019. "Agglomerative Clustering of Enteric Infections and Weather Parameters to Identify Seasonal Outbreaks in Cold Climates," IJERPH, MDPI, vol. 16(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    2. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    3. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    4. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    5. Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
    6. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    7. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    8. Dionne, Georges & Saissi-Hassani, Samir, 2016. "Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Working Papers 15-3, HEC Montreal, Canada Research Chair in Risk Management.
    9. Anastasios Petropoulos & Vasilis Siakoulis & Dionysios Mylonas & Aristotelis Klamargias, 2018. "A combined statistical framework for forecasting default rates of Greek Financial Institutions' credit portfolios," Working Papers 243, Bank of Greece.
    10. Sylvia Frühwirth‐Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter‐Ebmer, 2012. "Labor market entry and earnings dynamics: Bayesian inference using mixtures‐of‐experts Markov chain clustering," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1116-1137, November.
    11. Denis S Willett & Justin George & Nora S Willett & Lukasz L Stelinski & Stephen L Lapointe, 2016. "Machine Learning for Characterization of Insect Vector Feeding," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-14, November.
    12. Yao-Zhi Xu & Jian-Lin Zhang & Ying Hua & Lin-Yue Wang, 2019. "Dynamic Credit Risk Evaluation Method for E-Commerce Sellers Based on a Hybrid Artificial Intelligence Model," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    13. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers CWP06/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Wang, You & Gong, Xu, 2022. "Analyzing the difference evolution of provincial energy consumption in China using the functional data analysis method," Energy Economics, Elsevier, vol. 105(C).
    15. repec:onb:oenbwp:y:2011:i:22:b:1 is not listed on IDEAS
    16. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    17. Davey, Calum & Dirawo, Jeffrey & Mushati, Phillis & Magutshwa, Sitholubuhle & Hargreaves, James R. & Cowan, Frances M., 2019. "Mobility and sex work: why, where, when? A typology of female-sex-worker mobility in Zimbabwe," Social Science & Medicine, Elsevier, vol. 220(C), pages 322-330.
    18. Georges Dionne & Amir Saissi Hassani, 2015. "Endogenous Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Cahiers de recherche 1516, CIRPEE.
    19. Elliott, Robert J. & Chen, Zhiping & Duan, Qihong, 2009. "Insurance claims modulated by a hidden Brownian marked point process," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 163-172, October.
    20. Michael Vogt & Oliver Linton, 2017. "Classification of non-parametric regression functions in longitudinal data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 5-27, January.
    21. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Migration Analysis; Conditioning Transition Matrices on the Stage of the Business Cycle," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 20(2), pages 151-166, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:3:p:2741-2763:d:33778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.