IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v9y2018i4p84-d177231.html
   My bibliography  Save this article

A Stochastic Maximum Principle for Markov Chains of Mean-Field Type

Author

Listed:
  • Salah Eddine Choutri

    (Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden)

  • Tembine Hamidou

    (Learning and Game Theory Laboratory, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE)

Abstract

We derive sufficient and necessary optimality conditions in terms of a stochastic maximum principle (SMP) for controls associated with cost functionals of mean-field type, under dynamics driven by a class of Markov chains of mean-field type which are pure jump processes obtained as solutions of a well-posed martingale problem. As an illustration, we apply the result to generic examples of control problems as well as some applications.

Suggested Citation

  • Salah Eddine Choutri & Tembine Hamidou, 2018. "A Stochastic Maximum Principle for Markov Chains of Mean-Field Type," Games, MDPI, vol. 9(4), pages 1-21, October.
  • Handle: RePEc:gam:jgames:v:9:y:2018:i:4:p:84-:d:177231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/9/4/84/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/9/4/84/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, S. & Zheng, X., 1992. "Solutions of a class of nonlinear master equations," Stochastic Processes and their Applications, Elsevier, vol. 43(1), pages 65-84, November.
    2. Buckdahn, Rainer & Li, Juan & Peng, Shige, 2009. "Mean-field backward stochastic differential equations and related partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3133-3154, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Aurell & René Carmona & Gökçe Dayanıklı & Mathieu Laurière, 2022. "Finite State Graphon Games with Applications to Epidemics," Dynamic Games and Applications, Springer, vol. 12(1), pages 49-81, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hanwu, 2024. "Backward stochastic differential equations with double mean reflections," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    2. Buckdahn, Rainer & Chen, Yajie & Li, Juan, 2021. "Partial derivative with respect to the measure and its application to general controlled mean-field systems," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 265-307.
    3. Feng, Shui, 1995. "Nonlinear master equation of multitype particle systems," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 247-271, June.
    4. Qun Shi, 2021. "Generalized Mean-Field Fractional BSDEs With Non-Lipschitz Coefficients," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-77, June.
    5. Kaitong Hu & Zhenjie Ren & Junjian Yang, 2019. "Principal-agent problem with multiple principals," Working Papers hal-02088486, HAL.
    6. Li, Juan, 2018. "Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3118-3180.
    7. Wei Zhang & Hui Min, 2023. "$$L^p$$ L p -Error Estimates for Numerical Schemes for Solving Certain Kinds of Mean-Field Backward Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 36(2), pages 762-778, June.
    8. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    9. Vassili Kolokoltsov & Marianna Troeva & Wei Yang, 2014. "On the Rate of Convergence for the Mean-Field Approximation of Controlled Diffusions with Large Number of Players," Dynamic Games and Applications, Springer, vol. 4(2), pages 208-230, June.
    10. Alexander Kalinin & Thilo Meyer-Brandis & Frank Proske, 2024. "Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments," Journal of Theoretical Probability, Springer, vol. 37(4), pages 2941-2989, November.
    11. Roxana Dumitrescu & Bernt Øksendal & Agnès Sulem, 2018. "Stochastic Control for Mean-Field Stochastic Partial Differential Equations with Jumps," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 559-584, March.
    12. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.
    13. Mokhtar Hafayed & Syed Abbas & Abdelmadjid Abba, 2015. "On Mean-Field Partial Information Maximum Principle of Optimal Control for Stochastic Systems with Lévy Processes," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 1051-1069, December.
    14. Alain Bensoussan & Boualem Djehiche & Hamidou Tembine & Sheung Chi Phillip Yam, 2020. "Mean-Field-Type Games with Jump and Regime Switching," Dynamic Games and Applications, Springer, vol. 10(1), pages 19-57, March.
    15. Hao, Tao & Wen, Jiaqiang & Xiong, Jie, 2022. "Solvability of a class of mean-field BSDEs with quadratic growth," Statistics & Probability Letters, Elsevier, vol. 191(C).
    16. Kamal Boukhetala & Jean-François Dupuy, 2019. "Modélisation Stochastique et Statistique Book of Proceedings," Post-Print hal-02593238, HAL.
    17. Grosskinsky, Stefan & Jatuviriyapornchai, Watthanan, 2019. "Derivation of mean-field equations for stochastic particle systems," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1455-1475.
    18. Li, Juan & Liang, Hao & Mi, Chao, 2023. "A stochastic maximum principle for partially observed general mean-field control problems with only weak solution," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 397-439.
    19. Chen, Xiong & Feng, Shui, 1996. "Critical phenomenon of a two component nonlinear stochastic system," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 147-155, October.
    20. Douissi, Soukaina & Wen, Jiaqiang & Shi, Yufeng, 2019. "Mean-field anticipated BSDEs driven by fractional Brownian motion and related stochastic control problem," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 282-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:9:y:2018:i:4:p:84-:d:177231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.