IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v134y2021icp265-307.html
   My bibliography  Save this article

Partial derivative with respect to the measure and its application to general controlled mean-field systems

Author

Listed:
  • Buckdahn, Rainer
  • Chen, Yajie
  • Li, Juan

Abstract

Let (E,E) be an arbitrary measurable space. The paper first focuses on studying the partial derivative of a function f:P2,0(Rd×E)→R defined on the space of probability measures μ over (Rd×E,B(Rd)⊗E) whose first marginal μ1≔μ(⋅×E) has a finite second order moment. This partial derivative is taken with respect to q(dx,z), where μ has the disintegration μ(dxdz)=q(dx,z)μ2(dz) with respect to its second marginal μ2(⋅)=μ(Rd×⋅). Simplifying the language, we will speak of the derivative with respect to the law μ conditioned to its second marginal. Our results extend those of the derivative of a function g:P2(Rd)→R over the space of probability measures with finite second order moment by P.L. Lions (see Lions (2013)) but cover also as a particular case recent approaches considering E=Rk and supposing the differentiability of f over P2(Rd×Rk), in order to use the derivative ∂μf to define the partial derivative (∂μf)1. The second part of the paper focuses on investigating a stochastic maximum principle, where the controlled state process is driven by a general mean-field stochastic differential equation with partial information. The control set is just supposed to be a measurable space, and the coefficients of the controlled system, i.e., those of the dynamics as well as of the cost functional, depend on the controlled state process X, the control v, a partial information on X, as well as on the joint law of (X,v). Through considering a new second-order variational equation and the corresponding second-order adjoint equation, and a totally new method to prove the estimate for the solution of the first-order variational equation, the optimal principle is proved through spike variation of an optimal control and with the help of the tailor-made form of second-order expansion. We emphasize that in our assumptions we do not need any regularity of the coefficients neither in the control variable nor with respect to the law of the control process.

Suggested Citation

  • Buckdahn, Rainer & Chen, Yajie & Li, Juan, 2021. "Partial derivative with respect to the measure and its application to general controlled mean-field systems," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 265-307.
  • Handle: RePEc:eee:spapps:v:134:y:2021:i:c:p:265-307
    DOI: 10.1016/j.spa.2021.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492100003X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Juan, 2018. "Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3118-3180.
    2. Buckdahn, Rainer & Li, Juan & Peng, Shige, 2009. "Mean-field backward stochastic differential equations and related partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3133-3154, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Juan & Liang, Hao & Mi, Chao, 2023. "A stochastic maximum principle for partially observed general mean-field control problems with only weak solution," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 397-439.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sin, Myong-Guk & Ri, Kyong-Il & Kim, Kyong-Hui, 2022. "Existence and uniqueness of solution for coupled fractional mean-field forward–backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 190(C).
    2. Li, Hanwu, 2024. "Backward stochastic differential equations with double mean reflections," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    3. Guo, Xin & Pham, Huyên & Wei, Xiaoli, 2023. "Itô’s formula for flows of measures on semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 350-390.
    4. Qun Shi, 2021. "Generalized Mean-Field Fractional BSDEs With Non-Lipschitz Coefficients," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-77, June.
    5. Kaitong Hu & Zhenjie Ren & Junjian Yang, 2019. "Principal-agent problem with multiple principals," Working Papers hal-02088486, HAL.
    6. Li, Juan, 2018. "Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3118-3180.
    7. Wei Zhang & Hui Min, 2023. "$$L^p$$ L p -Error Estimates for Numerical Schemes for Solving Certain Kinds of Mean-Field Backward Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 36(2), pages 762-778, June.
    8. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    9. Vassili Kolokoltsov & Marianna Troeva & Wei Yang, 2014. "On the Rate of Convergence for the Mean-Field Approximation of Controlled Diffusions with Large Number of Players," Dynamic Games and Applications, Springer, vol. 4(2), pages 208-230, June.
    10. Alexander Kalinin & Thilo Meyer-Brandis & Frank Proske, 2024. "Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments," Journal of Theoretical Probability, Springer, vol. 37(4), pages 2941-2989, November.
    11. Roxana Dumitrescu & Bernt Øksendal & Agnès Sulem, 2018. "Stochastic Control for Mean-Field Stochastic Partial Differential Equations with Jumps," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 559-584, March.
    12. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.
    13. Mokhtar Hafayed & Syed Abbas & Abdelmadjid Abba, 2015. "On Mean-Field Partial Information Maximum Principle of Optimal Control for Stochastic Systems with Lévy Processes," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 1051-1069, December.
    14. Alain Bensoussan & Boualem Djehiche & Hamidou Tembine & Sheung Chi Phillip Yam, 2020. "Mean-Field-Type Games with Jump and Regime Switching," Dynamic Games and Applications, Springer, vol. 10(1), pages 19-57, March.
    15. Hao, Tao & Wen, Jiaqiang & Xiong, Jie, 2022. "Solvability of a class of mean-field BSDEs with quadratic growth," Statistics & Probability Letters, Elsevier, vol. 191(C).
    16. Kamal Boukhetala & Jean-François Dupuy, 2019. "Modélisation Stochastique et Statistique Book of Proceedings," Post-Print hal-02593238, HAL.
    17. Li, Juan & Liang, Hao & Mi, Chao, 2023. "A stochastic maximum principle for partially observed general mean-field control problems with only weak solution," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 397-439.
    18. Douissi, Soukaina & Wen, Jiaqiang & Shi, Yufeng, 2019. "Mean-field anticipated BSDEs driven by fractional Brownian motion and related stochastic control problem," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 282-298.
    19. Bender, Christian, 2014. "Backward SDEs driven by Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2892-2916.
    20. Salah Eddine Choutri & Tembine Hamidou, 2018. "A Stochastic Maximum Principle for Markov Chains of Mean-Field Type," Games, MDPI, vol. 9(4), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:134:y:2021:i:c:p:265-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.