IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v57y1995i2p247-271.html
   My bibliography  Save this article

Nonlinear master equation of multitype particle systems

Author

Listed:
  • Feng, Shui

Abstract

In this paper we prove the existence and uniqueness of solutions of the nonlinear martingale problems associated with the nonlinear master equations of multitype particle systems. Existence is shown to hold under some weak growth conditions and a finite range condition, while uniqueness is proved under a Lipschitz condition. Uniqueness is also shown to hold under a non-Lipschitz condition and a strong growth condition. The proof of uniqueness involves a coupling argument and the exponential martingale property. The results are then applied to some examples such as the Lotka-Volterra model and the Brusselator.

Suggested Citation

  • Feng, Shui, 1995. "Nonlinear master equation of multitype particle systems," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 247-271, June.
  • Handle: RePEc:eee:spapps:v:57:y:1995:i:2:p:247-271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(94)00055-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, S. & Zheng, X., 1992. "Solutions of a class of nonlinear master equations," Stochastic Processes and their Applications, Elsevier, vol. 43(1), pages 65-84, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiong & Feng, Shui, 1996. "Critical phenomenon of a two component nonlinear stochastic system," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 147-155, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grosskinsky, Stefan & Jatuviriyapornchai, Watthanan, 2019. "Derivation of mean-field equations for stochastic particle systems," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1455-1475.
    2. Chen, Xiong & Feng, Shui, 1996. "Critical phenomenon of a two component nonlinear stochastic system," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 147-155, October.
    3. Salah Eddine Choutri & Tembine Hamidou, 2018. "A Stochastic Maximum Principle for Markov Chains of Mean-Field Type," Games, MDPI, vol. 9(4), pages 1-21, October.
    4. Xi, Fubao & Zhu, Chao, 2018. "On the martingale problem and Feller and strong Feller properties for weakly coupled Lévy type operators," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4277-4308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:57:y:1995:i:2:p:247-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.