IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i4p1455-1475.html
   My bibliography  Save this article

Derivation of mean-field equations for stochastic particle systems

Author

Listed:
  • Grosskinsky, Stefan
  • Jatuviriyapornchai, Watthanan

Abstract

We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation.

Suggested Citation

  • Grosskinsky, Stefan & Jatuviriyapornchai, Watthanan, 2019. "Derivation of mean-field equations for stochastic particle systems," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1455-1475.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:4:p:1455-1475
    DOI: 10.1016/j.spa.2018.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918301765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, S. & Zheng, X., 1992. "Solutions of a class of nonlinear master equations," Stochastic Processes and their Applications, Elsevier, vol. 43(1), pages 65-84, November.
    2. Armendáriz, Inés & Grosskinsky, Stefan & Loulakis, Michail, 2013. "Zero-range condensation at criticality," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3466-3496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Düring, Bertram & Georgiou, Nicos & Merino-Aceituno, Sara & Scalas, Enrico, 2022. "Continuum and thermodynamic limits for a simple random-exchange model," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 248-277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiong & Feng, Shui, 1996. "Critical phenomenon of a two component nonlinear stochastic system," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 147-155, October.
    2. Salah Eddine Choutri & Tembine Hamidou, 2018. "A Stochastic Maximum Principle for Markov Chains of Mean-Field Type," Games, MDPI, vol. 9(4), pages 1-21, October.
    3. Xi, Fubao & Zhu, Chao, 2018. "On the martingale problem and Feller and strong Feller properties for weakly coupled Lévy type operators," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4277-4308.
    4. Nicholas M. Ercolani & Sabine Jansen & Daniel Ueltschi, 2019. "Singularity Analysis for Heavy-Tailed Random Variables," Journal of Theoretical Probability, Springer, vol. 32(1), pages 1-46, March.
    5. Feng, Shui, 1995. "Nonlinear master equation of multitype particle systems," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 247-271, June.
    6. Mailler, Cécile & Mörters, Peter & Ueltschi, Daniel, 2016. "Condensation and symmetry-breaking in the zero-range process with weak site disorder," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3283-3309.
    7. Landim, C., 2023. "Metastability from the large deviations point of view: A Γ-expansion of the level two large deviations rate functional of non-reversible finite-state Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 275-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:4:p:1455-1475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.