IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v9y2018i2p33-d151337.html
   My bibliography  Save this article

Successful Nash Equilibrium Agent for a Three-Player Imperfect-Information Game

Author

Listed:
  • Sam Ganzfried

    (Ganzfried Research, Miami Beach, FL 33139, USA
    School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA)

  • Austin Nowak

    (School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA)

  • Joannier Pinales

    (School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA)

Abstract

Creating strong agents for games with more than two players is a major open problem in AI. Common approaches are based on approximating game-theoretic solution concepts such as Nash equilibrium, which have strong theoretical guarantees in two-player zero-sum games, but no guarantees in non-zero-sum games or in games with more than two players. We describe an agent that is able to defeat a variety of realistic opponents using an exact Nash equilibrium strategy in a three-player imperfect-information game. This shows that, despite a lack of theoretical guarantees, agents based on Nash equilibrium strategies can be successful in multiplayer games after all.

Suggested Citation

  • Sam Ganzfried & Austin Nowak & Joannier Pinales, 2018. "Successful Nash Equilibrium Agent for a Three-Player Imperfect-Information Game," Games, MDPI, vol. 9(2), pages 1-8, June.
  • Handle: RePEc:gam:jgames:v:9:y:2018:i:2:p:33-:d:151337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/9/2/33/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/9/2/33/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    2. Koller, Daphne & Megiddo, Nimrod, 1992. "The complexity of two-person zero-sum games in extensive form," Games and Economic Behavior, Elsevier, vol. 4(4), pages 528-552, October.
    3. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam Ganzfried, 2020. "Fast Complete Algorithm for Multiplayer Nash Equilibrium," Papers 2002.04734, arXiv.org, revised Jan 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam Ganzfried & Austin Nowak & Joannier Pinales, 2018. "Successful Nash Equilibrium Agent for a 3-Player Imperfect-Information Game," Papers 1804.04789, arXiv.org.
    2. P. Giovani Palafox-Alcantar & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Hybrid Methodology to Study Stakeholder Cooperation in Circular Economy Waste Management of Cities," Energies, MDPI, vol. 13(7), pages 1-30, April.
    3. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
    4. Thompson, David R.M. & Leyton-Brown, Kevin, 2017. "Computational analysis of perfect-information position auctions," Games and Economic Behavior, Elsevier, vol. 102(C), pages 583-623.
    5. Sam Ganzfried & Conner Laughlin & Charles Morefield, 2019. "Parallel Algorithm for Approximating Nash Equilibrium in Multiplayer Stochastic Games with Application to Naval Strategic Planning," Papers 1910.00193, arXiv.org, revised Mar 2020.
    6. Sam Ganzfried, 2018. "Optimization-Based Algorithm for Evolutionarily Stable Strategies against Pure Mutations," Papers 1803.00607, arXiv.org, revised Jan 2019.
    7. Jiang, Albert Xin & Leyton-Brown, Kevin & Bhat, Navin A.R., 2011. "Action-Graph Games," Games and Economic Behavior, Elsevier, vol. 71(1), pages 141-173, January.
    8. Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
    9. von Stengel, Bernhard & Koller, Daphne, 1997. "Team-Maxmin Equilibria," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 309-321, October.
    10. Sung, Shao-Chin & Dimitrov, Dinko, 2010. "Computational complexity in additive hedonic games," European Journal of Operational Research, Elsevier, vol. 203(3), pages 635-639, June.
    11. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    12. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    13. Godinho, Pedro & Dias, Joana, 2013. "Two-player simultaneous location game: Preferential rights and overbidding," European Journal of Operational Research, Elsevier, vol. 229(3), pages 663-672.
    14. Hanyu Li & Wenhan Huang & Zhijian Duan & David Henry Mguni & Kun Shao & Jun Wang & Xiaotie Deng, 2023. "A survey on algorithms for Nash equilibria in finite normal-form games," Papers 2312.11063, arXiv.org.
    15. Srihari Govindan & Robert Wilson, 2012. "Axiomatic Equilibrium Selection for Generic Two‐Player Games," Econometrica, Econometric Society, vol. 80(4), pages 1639-1699, July.
    16. Sam Ganzfried, 2020. "Fast Complete Algorithm for Multiplayer Nash Equilibrium," Papers 2002.04734, arXiv.org, revised Jan 2023.
    17. Govindan, Srihari & Wilson, Robert, 2009. "Global Newton Method for stochastic games," Journal of Economic Theory, Elsevier, vol. 144(1), pages 414-421, January.
    18. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
    19. Sam Ganzfried & Farzana Yusuf, 2017. "Computing Human-Understandable Strategies: Deducing Fundamental Rules of Poker Strategy," Games, MDPI, vol. 8(4), pages 1-13, November.
    20. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:9:y:2018:i:2:p:33-:d:151337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.