IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i4p132-d1111713.html
   My bibliography  Save this article

Study of Coded ALOHA with Multi-User Detection under Heavy-Tailed and Correlated Arrivals

Author

Listed:
  • María E. Sousa-Vieira

    (atlanTTic Research Center, Universidade de Vigo, 36310 Vigo, Spain)

  • Manuel Fernández-Veiga

    (atlanTTic Research Center, Universidade de Vigo, 36310 Vigo, Spain)

Abstract

In this paper, we study via simulation the performance of irregular repetition slotted ALOHA under multi-packet detection and different patterns of the load process. On the one hand, we model the arrival process with a version of the M/G/ ∞ process able to exhibit a correlation structure decaying slowly in time. Given the independence among frames in frame-synchronous coded-slotted ALOHA (CSA), this variation should only take effect on frame-asynchronous CSA. On the other hand, we vary the marginal distribution of the arrival process using discrete versions of the Lognormal and Pareto distributions, with the objective of investigating the influence of the right tail. In this case, both techniques should be affected by the change, albeit to a different degree. Our results confirm these hypotheses and show that these factors must be taken into account when designing and analyzing these systems. In frameless operations, both the shape of the packet arrivals tail distribution and the existence of short-range and long-range correlations strongly impact the packet loss ratio and the average delay. Nevertheless, these effects emerge only weakly in the case of frame-aligned operations, because this enforces the system to introduce a delay in the newly arrived packets (until the beginning of the next frame), and implies that the backlog of accumulated packets is the key quantity for calculating the performance.

Suggested Citation

  • María E. Sousa-Vieira & Manuel Fernández-Veiga, 2023. "Study of Coded ALOHA with Multi-User Detection under Heavy-Tailed and Correlated Arrivals," Future Internet, MDPI, vol. 15(4), pages 1-18, March.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:4:p:132-:d:1111713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/4/132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/4/132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pipiras,Vladas & Taqqu,Murad S., 2017. "Long-Range Dependence and Self-Similarity," Cambridge Books, Cambridge University Press, number 9781107039469.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    2. Shuyang Bai, 2022. "Limit Theorems for Conservative Flows on Multiple Stochastic Integrals," Journal of Theoretical Probability, Springer, vol. 35(2), pages 917-948, June.
    3. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    4. Ran Wang & Yimin Xiao, 2022. "Exact Uniform Modulus of Continuity and Chung’s LIL for the Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2442-2479, December.
    5. Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2018. "Intermittency of trawl processes," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 235-242.
    6. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    7. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Patrice Abry & Yannick Malevergne & Herwig Wendt & Marc Senneret & Laurent Jaffrès & Blaise Liaustrat, 2019. "Shuffling for understanding multifractality, application to asset price time series," Post-Print hal-02361738, HAL.
    9. Kubiv Stepan, 2019. "Approximations and forecasting quasi-stationary processes with sudden runs," Technology audit and production reserves, 4(48) 2019, Socionet;Technology audit and production reserves, vol. 4(4(48)), pages 37-39.
    10. Rudy Morel & Gaspar Rochette & Roberto Leonarduzzi & Jean-Philippe Bouchaud & St'ephane Mallat, 2022. "Scale Dependencies and Self-Similar Models with Wavelet Scattering Spectra," Papers 2204.10177, arXiv.org, revised Jun 2023.
    11. Grahovac, Danijel, 2022. "Intermittency in the small-time behavior of Lévy processes," Statistics & Probability Letters, Elsevier, vol. 187(C).
    12. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    13. Johann Gehringer & Xue-Mei Li, 2022. "Functional Limit Theorems for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 35(1), pages 426-456, March.
    14. Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
    15. Obayda Assaad & Ciprian A. Tudor, 2020. "Parameter identification for the Hermite Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 251-270, July.
    16. Ta Cong Son & Le Van Dung, 2022. "Central Limit Theorems for Weighted Sums of Dependent Random Vectors in Hilbert Spaces via the Theory of the Regular Variation," Journal of Theoretical Probability, Springer, vol. 35(2), pages 988-1012, June.
    17. Yuanhua Feng & Jan Beran & Sebastian Letmathe & Sucharita Ghosh, 2020. "Fractionally integrated Log-GARCH with application to value at risk and expected shortfall," Working Papers CIE 137, Paderborn University, CIE Center for International Economics.
    18. Tomoyuki Ichiba & Guodong Pang & Murad S. Taqqu, 2022. "Path Properties of a Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 550-574, March.
    19. Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2019. "Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5113-5150.
    20. Grahovac, Danijel, 2020. "Multifractal processes: Definition, properties and new examples," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:4:p:132-:d:1111713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.