IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v187y2022ics0167715222000852.html
   My bibliography  Save this article

Intermittency in the small-time behavior of Lévy processes

Author

Listed:
  • Grahovac, Danijel

Abstract

In this paper we consider convergence of moments in the small-time limit theorems for Lévy processes. We provide precise asymptotics for all the absolute moments of positive order. The convergence of moments in limit theorems holds typically only up to some critical moment order and higher order moments decay at different rate. Such behavior is known as intermittency and has been encountered in some limit theorems.

Suggested Citation

  • Grahovac, Danijel, 2022. "Intermittency in the small-time behavior of Lévy processes," Statistics & Probability Letters, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:stapro:v:187:y:2022:i:c:s0167715222000852
    DOI: 10.1016/j.spl.2022.109507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danijel Grahovac & Nikolai N. Leonenko & Murad S. Taqqu, 2020. "The Multifaceted Behavior of Integrated supOU Processes: The Infinite Variance Case," Journal of Theoretical Probability, Springer, vol. 33(4), pages 1801-1831, December.
    2. Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2019. "Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5113-5150.
    3. R. A. Doney & R. A. Maller, 2002. "Stability and Attraction to Normality for Lévy Processes at Zero and at Infinity," Journal of Theoretical Probability, Springer, vol. 15(3), pages 751-792, July.
    4. Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2018. "Intermittency of trawl processes," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 235-242.
    5. J. F. Muzy & R. Baile & E. Bacry, 2013. "Random cascade model in the limit of infinite integral scale as the exponential of a non-stationary $1/f$ noise. Application to volatility fluctuations in stock markets," Papers 1301.4160, arXiv.org.
    6. Pipiras,Vladas & Taqqu,Murad S., 2017. "Long-Range Dependence and Self-Similarity," Cambridge Books, Cambridge University Press, number 9781107039469, October.
    7. Deng, Chang-Song & Schilling, René L., 2015. "On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3851-3878.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grahovac, Danijel, 2020. "Multifractal processes: Definition, properties and new examples," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Fageot, Julien & Fallah, Alireza & Unser, Michael, 2017. "Multidimensional Lévy white noise in weighted Besov spaces," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1599-1621.
    3. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    4. Ran Wang & Yimin Xiao, 2022. "Exact Uniform Modulus of Continuity and Chung’s LIL for the Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2442-2479, December.
    5. Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2018. "Intermittency of trawl processes," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 235-242.
    6. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    7. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Patrice Abry & Yannick Malevergne & Herwig Wendt & Marc Senneret & Laurent Jaffrès & Blaise Liaustrat, 2019. "Shuffling for understanding multifractality, application to asset price time series," Post-Print hal-02361738, HAL.
    9. Kubiv Stepan, 2019. "Approximations and forecasting quasi-stationary processes with sudden runs," Technology audit and production reserves, 4(48) 2019, Socionet;Technology audit and production reserves, vol. 4(4(48)), pages 37-39.
    10. Yuguang Fan, 2017. "Tightness and Convergence of Trimmed Lévy Processes to Normality at Small Times," Journal of Theoretical Probability, Springer, vol. 30(2), pages 675-699, June.
    11. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    12. Johann Gehringer & Xue-Mei Li, 2022. "Functional Limit Theorems for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 35(1), pages 426-456, March.
    13. Obayda Assaad & Ciprian A. Tudor, 2020. "Parameter identification for the Hermite Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 251-270, July.
    14. Song, Yan-Hong, 2016. "Algebraic ergodicity for SDEs driven by Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 108-115.
    15. Cristina Sattarhoff & Marc Gronwald, 2018. "How to Measure Financial Market Efficiency? A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market," CESifo Working Paper Series 7102, CESifo.
    16. Danijel Grahovac & Nikolai N. Leonenko & Murad S. Taqqu, 2020. "The Multifaceted Behavior of Integrated supOU Processes: The Infinite Variance Case," Journal of Theoretical Probability, Springer, vol. 33(4), pages 1801-1831, December.
    17. Tomoyuki Ichiba & Guodong Pang & Murad S. Taqqu, 2022. "Path Properties of a Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 550-574, March.
    18. Jan Beran & Klaus Telkmann, 2021. "On inference for modes under long memory," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 429-455, June.
    19. Kühn, Franziska & Schilling, René L., 2019. "Strong convergence of the Euler–Maruyama approximation for a class of Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2654-2680.
    20. Forde, Martin & Smith, Benjamin, 2020. "The conditional law of the Bacry–Muzy and Riemann–Liouville log correlated Gaussian fields and their GMC, via Gaussian Hilbert and fractional Sobolev spaces," Statistics & Probability Letters, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:187:y:2022:i:c:s0167715222000852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.