IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v20y2020i1p69-79.html
   My bibliography  Save this article

Stock market trend prediction using a functional time series approach

Author

Listed:
  • Shih-Feng Huang
  • Meihui Guo
  • May-Ru Chen

Abstract

Thanks to advanced technologies, ultra-high-frequency limit order book (LOB) data are now available to data analysts. An LOB contains comprehensive information on all transactions in a market. We use LOB data to investigate the high-frequency dynamics of market supply and demand (S–D) and inspect their impacts on intra-daily market trends. The intra-daily S–D curves are fitted with B-spline basis functions. Technique of multi-resolution is introduced to capture inhomogeneous curvature of the S–D curves and a lasso-type criterion is employed to select a common basis set. Based on empirical evidence, we model the time varying coefficients in the B-spline interpolation by vector autoregressive models of order $p (\geq ~1) $p(≥ 1). The Xgboost algorithm is employed to extract information from the areas under the S–D curves to predict the intra-daily market trends. In the empirical study, we analyze the LOB data from LOBSTER (https://lobsterdata.com/). The results show that the proposed approach is able to recover the S–D curves and has satisfactory performance on both curve and market trend predictions.

Suggested Citation

  • Shih-Feng Huang & Meihui Guo & May-Ru Chen, 2020. "Stock market trend prediction using a functional time series approach," Quantitative Finance, Taylor & Francis Journals, vol. 20(1), pages 69-79, January.
  • Handle: RePEc:taf:quantf:v:20:y:2020:i:1:p:69-79
    DOI: 10.1080/14697688.2019.1651452
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1651452
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1651452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Chih-Hao & Chen, Zih-Bing & Huang, Shih-Feng, 2022. "Forecasting of high-resolution electricity consumption with stochastic climatic covariates via a functional time series approach," Applied Energy, Elsevier, vol. 309(C).
    2. Shangkun Deng & Yingke Zhu & Xiaoru Huang & Shuangyang Duan & Zhe Fu, 2022. "High-Frequency Direction Forecasting of the Futures Market Using a Machine-Learning-Based Method," Future Internet, MDPI, vol. 14(6), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:20:y:2020:i:1:p:69-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.