IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v20y2017i1d10.1007_s10729-015-9335-1.html
   My bibliography  Save this article

Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm

Author

Listed:
  • Yen-Yi Feng

    (Mackay Memorial Hospital)

  • I-Chin Wu

    (Fu Jen Catholic University)

  • Tzu-Li Chen

    (Fu Jen Catholic University)

Abstract

The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.

Suggested Citation

  • Yen-Yi Feng & I-Chin Wu & Tzu-Li Chen, 2017. "Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm," Health Care Management Science, Springer, vol. 20(1), pages 55-75, March.
  • Handle: RePEc:kap:hcarem:v:20:y:2017:i:1:d:10.1007_s10729-015-9335-1
    DOI: 10.1007/s10729-015-9335-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-015-9335-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-015-9335-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elif Akcali & Murray Côté & Chin Lin, 2006. "A network flow approach to optimizing hospital bed capacity decisions," Health Care Management Science, Springer, vol. 9(4), pages 391-404, November.
    2. Ahmed, Mohamed A. & Alkhamis, Talal M., 2009. "Simulation optimization for an emergency department healthcare unit in Kuwait," European Journal of Operational Research, Elsevier, vol. 198(3), pages 936-942, November.
    3. Jeffery K. Cochran & Aseem Bharti, 2006. "A multi-stage stochastic methodology for whole hospital bed planning under peak loading," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 1(1/2), pages 8-36.
    4. J K Cochran & K Roche, 2008. "A queuing-based decision support methodology to estimate hospital inpatient bed demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1471-1482, November.
    5. Loo Lee & Ek Chew & Suyan Teng & David Goldsman, 2010. "Finding the non-dominated Pareto set for multi-objective simulation models," IISE Transactions, Taylor & Francis Journals, vol. 42(9), pages 656-674.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Wook Kang & Muhammad Imran & Muhammad Omair & Waqas Ahmed & Misbah Ullah & Biswajit Sarkar, 2019. "Stochastic-Petri Net Modeling and Optimization for Outdoor Patients in Building Sustainable Healthcare System Considering Staff Absenteeism," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    2. Farouq Halawa & Sreenath Chalil Madathil & Alice Gittler & Mohammad T. Khasawneh, 2020. "Advancing evidence-based healthcare facility design: a systematic literature review," Health Care Management Science, Springer, vol. 23(3), pages 453-480, September.
    3. Marco Boresta & Tommaso Giovannelli & Massimo Roma, 2024. "Managing low–acuity patients in an Emergency Department through simulation–based multiobjective optimization using a neural network metamodel," Health Care Management Science, Springer, vol. 27(3), pages 415-435, September.
    4. Xianhua Wu & Yaru Cao & Yang Xiao & Ji Guo, 2020. "Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics," Annals of Operations Research, Springer, vol. 290(1), pages 865-896, July.
    5. Jesús Isaac Vázquez-Serrano & Rodrigo E. Peimbert-García & Leopoldo Eduardo Cárdenas-Barrón, 2021. "Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    6. Sanjay Mehrotra & Hamed Rahimian & Masoud Barah & Fengqiao Luo & Karolina Schantz, 2020. "A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 303-320, August.
    7. Ruoyan Sun & David Mendez, 2019. "Finding the optimal mix of smoking initiation and cessation interventions to reduce smoking prevalence," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-12, March.
    8. Davide Duma & Roberto Aringhieri, 2020. "An ad hoc process mining approach to discover patient paths of an Emergency Department," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 6-34, March.
    9. Shangkun Deng & Yingke Zhu & Xiaoru Huang & Shuangyang Duan & Zhe Fu, 2022. "High-Frequency Direction Forecasting of the Futures Market Using a Machine-Learning-Based Method," Future Internet, MDPI, vol. 14(6), pages 1-21, June.
    10. Duma, Davide & Aringhieri, Roberto, 2023. "Real-time resource allocation in the emergency department: A case study," Omega, Elsevier, vol. 117(C).
    11. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    12. Zhou, Liping & Geng, Na & Jiang, Zhibin & Wang, Xiuxian, 2018. "Multi-objective capacity allocation of hospital wards combining revenue and equity," Omega, Elsevier, vol. 81(C), pages 220-233.
    13. Miguel Angel Ortíz-Barrios & Dayana Milena Coba-Blanco & Juan-José Alfaro-Saíz & Daniela Stand-González, 2021. "Process Improvement Approaches for Increasing the Response of Emergency Departments against the COVID-19 Pandemic: A Systematic Review," IJERPH, MDPI, vol. 18(16), pages 1-31, August.
    14. Miguel Angel Ortíz-Barrios & Juan-José Alfaro-Saíz, 2020. "Methodological Approaches to Support Process Improvement in Emergency Departments: A Systematic Review," IJERPH, MDPI, vol. 17(8), pages 1-41, April.
    15. R. J. Kuo & P. F. Song & Thi Phuong Quyen Nguyen & T. J. Yang, 2023. "An application of multi-objective simulation optimization to medical resource allocation for the emergency department in Taiwan," Annals of Operations Research, Springer, vol. 326(1), pages 199-221, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    2. R. J. Kuo & P. F. Song & Thi Phuong Quyen Nguyen & T. J. Yang, 2023. "An application of multi-objective simulation optimization to medical resource allocation for the emergency department in Taiwan," Annals of Operations Research, Springer, vol. 326(1), pages 199-221, July.
    3. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    4. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    5. Fermín Mallor & Cristina Azcárate & Julio Barado, 2016. "Control problems and management policies in health systems: application to intensive care units," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 62-89, June.
    6. Ellen Bockstal & Broos Maenhout, 2019. "A study on the impact of prioritising emergency department arrivals on the patient waiting time," Health Care Management Science, Springer, vol. 22(4), pages 589-614, December.
    7. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    8. James T. Lin & Chun-Chih Chiu, 2018. "A hybrid particle swarm optimization with local search for stochastic resource allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 481-495, March.
    9. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    10. Kaya, Onur & Teymourifar, Aydin & Ozturk, Gurkan, 2020. "Analysis of different public policies through simulation to increase total social utility in a healthcare system," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    11. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    12. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    13. Na Li & Xiaorui Li & Paul Forero, 2022. "Physician scheduling for outpatient department with nonhomogeneous patient arrival and priority queue," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 879-915, December.
    14. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    15. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander & Stidsen, Thomas Riis, 2019. "Staff optimization for time-dependent acute patient flow," European Journal of Operational Research, Elsevier, vol. 272(1), pages 94-105.
    16. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    17. Gregory Dobson & Hsiao-Hui Lee & Edieal Pinker, 2010. "A Model of ICU Bumping," Operations Research, INFORMS, vol. 58(6), pages 1564-1576, December.
    18. Alberto De Santis & Tommaso Giovannelli & Stefano Lucidi & Mauro Messedaglia & Massimo Roma, 2020. "An optimal non-uniform piecewise constant approximation for the patient arrival rate for a more efficient representation of the Emergency Departments arrival process," DIAG Technical Reports 2020-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    19. Majed Hadid & Adel Elomri & Regina Padmanabhan & Laoucine Kerbache & Oualid Jouini & Abdelfatteh El Omri & Amir Nounou & Anas Hamad, 2022. "Clustering and Stochastic Simulation Optimization for Outpatient Chemotherapy Appointment Planning and Scheduling," IJERPH, MDPI, vol. 19(23), pages 1-34, November.
    20. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:20:y:2017:i:1:d:10.1007_s10729-015-9335-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.