IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2008-36-3.html
   My bibliography  Save this article

A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units

Author

Listed:

Abstract

Agent-based modeling is a technique for modeling dynamic systems from the bottom up. Individual elements of the system are represented computationally as agents. The system-level behaviors emerge from the micro-level interactions of the agents. Contemporary state-of-the-art agent-based modeling toolkits are essentially discrete-event simulators designed to execute serially on the Central Processing Unit (CPU). They simulate Agent-Based Models (ABMs) by executing agent actions one at a time. In addition to imposing an un-natural execution order, these toolkits have limited scalability. In this article, we investigate data-parallel computer architectures such as Graphics Processing Units (GPUs) to simulate large scale ABMs. We have developed a series of efficient, data parallel algorithms for handling environment updates, various agent interactions, agent death and replication, and gathering statistics. We present three fundamental innovations that provide unprecedented scalability. The first is a novel stochastic memory allocator which enables parallel agent replication in O(1) average time. The second is a technique for resolving precedence constraints for agent actions in parallel. The third is a method that uses specialized graphics hardware, to gather and process statistical measures. These techniques have been implemented on a modern day GPU resulting in a substantial performance increase. We believe that our system is the first ever completely GPU based agent simulation framework. Although GPUs are the focus of our current implementations, our techniques can easily be adapted to other data-parallel architectures. We have benchmarked our framework against contemporary toolkits using two popular ABMs, namely, SugarScape and StupidModel.

Suggested Citation

  • Mikola Lysenko & Roshan M. D'Souza, 2008. "A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(4), pages 1-10.
  • Handle: RePEc:jas:jasssj:2008-36-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/11/4/10/10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ross Richardson & Matteo Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," Economics Papers 2015-W05, Economics Group, Nuffield College, University of Oxford.
    2. Tang, Wenwu & Bennett, David A., 2011. "Parallel agent-based modeling of spatial opinion diffusion accelerated using graphics processing units," Ecological Modelling, Elsevier, vol. 222(19), pages 3605-3615.
    3. Fabien Michel, 2013. "Translating Agent Perception Computations into Environmental Processes in Multi‐Agent‐Based Simulations: A means for Integrating Graphics Processing Unit Programming within Usual Agent‐Based Simulatio," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(6), pages 703-715, November.
    4. Kostadinov, Fabian & Holm, Stefan & Steubing, Bernhard & Thees, Oliver & Lemm, Renato, 2014. "Simulation of a Swiss wood fuel and roundwood market: An explorative study in agent-based modeling," Forest Policy and Economics, Elsevier, vol. 38(C), pages 105-118.
    5. Mattia Pellegrino & Gianfranco Lombardo & Stefano Cagnoni & Agostino Poggi, 2022. "High-Performance Computing and ABMS for High-Resolution COVID-19 Spreading Simulation," Future Internet, MDPI, vol. 14(3), pages 1-23, March.
    6. Tang, Wenwu & Bennett, David A., 2012. "Reprint of: Parallel agent-based modeling of spatial opinion diffusion accelerated using graphics processing units," Ecological Modelling, Elsevier, vol. 229(C), pages 108-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luís de Sousa & Alberto Rodrigues da Silva, 2015. "Showcasing a Domain Specific Language for Spatial Simulation Scenarios with case studies," ERSA conference papers ersa15p1044, European Regional Science Association.
    2. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    3. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    4. Joshua M. Epstein, 2007. "Agent-Based Computational Models and Generative Social Science," Introductory Chapters, in: Generative Social Science Studies in Agent-Based Computational Modeling, Princeton University Press.
    5. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    6. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    7. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    8. Yanuar Nugroho & Gindo Tampubolon, 2008. "Network Dynamics in the Transition to Democracy: Mapping Global Networks of Contemporary Indonesian Civil Society," Sociological Research Online, , vol. 13(5), pages 144-160, September.
    9. Barr, Jason & Saraceno, Francesco, 2009. "Organization, learning and cooperation," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 39-53, May.
    10. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    11. Nannen, Volker & van den Bergh, Jeroen C. J. M. & Eiben, A. E., 2008. "Impact of Environmental Dynamics on Economic Evolution: Uncertainty, Risk Aversion, and Policy," MPRA Paper 13834, University Library of Munich, Germany.
    12. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. G. Fagiolo & G. Dosi & R. Gabriele, 2004. "Matching, Bargaining, And Wage Setting In An Evolutionary Model Of Labor Market And Output Dynamics," World Scientific Book Chapters, in: Roberto Leombruni & Matteo Richiardi (ed.), Industry And Labor Dynamics The Agent-Based Computational Economics Approach, chapter 5, pages 59-89, World Scientific Publishing Co. Pte. Ltd..
    14. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    15. Loet Leydesdorff, 2015. "Can intellectual processes in the sciences also be simulated? The anticipation and visualization of possible future states," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2197-2214, December.
    16. Tamotsu Onozaki, 2018. "Nonlinearity, Bounded Rationality, and Heterogeneity," Springer Books, Springer, number 978-4-431-54971-0, July.
    17. Ricetti, Luca & Russo, Alberto & Gallegati, Mauro, 2013. "Unemployment benefits and financial leverage in an agent based macroeconomic model," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 7, pages 1-44.
    18. Setsuya Kurahashi & Takao Terano, 2008. "Historical Simulation: A Study Of Civil Service Examinations, The Family Line And Cultural Capital In China," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 187-198.
    19. Stefan Gold & Thomas Chesney & Tim Gruchmann & Alexander Trautrims, 2020. "Diffusion of labor standards through supplier–subcontractor networks: An agent‐based model," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1274-1286, December.
    20. Giannoccaro, Ilaria, 2015. "Adaptive supply chains in industrial districts: A complexity science approach focused on learning," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 576-589.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2008-36-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.