IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i9p231-d630294.html
   My bibliography  Save this article

User Authentication Based on Handwriting Analysis of Pen-Tablet Sensor Data Using Optimal Feature Selection Model

Author

Listed:
  • Nasima Begum

    (Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh)

  • Md Azim Hossain Akash

    (Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh)

  • Sayma Rahman

    (Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh)

  • Jungpil Shin

    (School of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan)

  • Md Rashedul Islam

    (Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh)

  • Md Ezharul Islam

    (Department of Computer Science and Engineering, Jahangirnagar University, Dhaka 1342, Bangladesh)

Abstract

Handwriting analysis is playing an important role in user authentication or online writer identification for more than a decade. It has a significant role in different applications such as e-security, signature biometrics, e-health, gesture analysis, diagnosis system of Parkinson’s disease, Attention-deficit/hyperactivity disorders, analysis of vulnerable people (stressed, elderly, or drugged), prediction of gender, handedness and so on. Classical authentication systems are image-based, text-dependent, and password or fingerprint-based where the former one has the risk of information leakage. Alternatively, image processing and pattern-analysis-based systems are vulnerable to camera attributes, camera frames, light effect, and the quality of the image or pattern. Thus, in this paper, we concentrate on real-time and context-free handwriting data analysis for robust user authentication systems using digital pen-tablet sensor data. Most of the state-of-the-art authentication models show suboptimal performance for improper features. This research proposed a robust and efficient user identification system using an optimal feature selection technique based on the features from the sensor’s signal of pen and tablet devices. The proposed system includes more genuine and accurate numerical data which are used for features extraction model based on both the kinematic and statistical features of individual handwritings. Sensor data of digital pen-tablet devices generate high dimensional feature vectors for user identification. However, all the features do not play equal contribution to identify a user. Hence, to find out the optimal features, we utilized a hybrid feature selection model. Extracted features are then fed to the popular machine learning (ML) algorithms to generate a nonlinear classifier through training and testing phases. The experimental result analysis shows that the proposed model achieves more accurate and satisfactory results which ensure the practicality of our system for user identification with low computational cost.

Suggested Citation

  • Nasima Begum & Md Azim Hossain Akash & Sayma Rahman & Jungpil Shin & Md Rashedul Islam & Md Ezharul Islam, 2021. "User Authentication Based on Handwriting Analysis of Pen-Tablet Sensor Data Using Optimal Feature Selection Model," Future Internet, MDPI, vol. 13(9), pages 1-25, September.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:9:p:231-:d:630294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/9/231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/9/231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    2. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    3. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    4. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    5. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    6. Sana Sadiq & Khadija Anasse & Najib Slimani, 2022. "The impact of mobile phones on high school students: connecting the research dots," Technium Social Sciences Journal, Technium Science, vol. 30(1), pages 252-270, April.
    7. Jascha-Alexander Koch & Michael Siering, 2019. "The recipe of successful crowdfunding campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 661-679, December.
    8. Martins, José & Costa, Catarina & Oliveira, Tiago & Gonçalves, Ramiro & Branco, Frederico, 2019. "How smartphone advertising influences consumers' purchase intention," Journal of Business Research, Elsevier, vol. 94(C), pages 378-387.
    9. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    11. Bilgihan, Anil & Barreda, Albert & Okumus, Fevzi & Nusair, Khaldoon, 2016. "Consumer perception of knowledge-sharing in travel-related Online Social Networks," Tourism Management, Elsevier, vol. 52(C), pages 287-296.
    12. Géraldine Boué & Enda Cummins & Sandrine Guillou & Jean‐Philippe Antignac & Bruno Le Bizec & Jeanne‐Marie Membré, 2017. "Development and Application of a Probabilistic Risk–Benefit Assessment Model for Infant Feeding Integrating Microbiological, Nutritional, and Chemical Components," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2360-2388, December.
    13. Leila Tavakoli & Hamed Zamani & Falk Scholer & William Bruce Croft & Mark Sanderson, 2022. "Analyzing clarification in asynchronous information‐seeking conversations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(3), pages 449-471, March.
    14. Chiara Francalanci & Ajaz Hussain, 2016. "Discovering social influencers with network visualization: evidence from the tourism domain," Information Technology & Tourism, Springer, vol. 16(1), pages 103-125, March.
    15. Lutz, Christoph & Newlands, Gemma, 2018. "Consumer segmentation within the sharing economy: The case of Airbnb," Journal of Business Research, Elsevier, vol. 88(C), pages 187-196.
    16. van Weeghel, H.J.E. & Bos, A.P. & Jansen, M.H. & Ursinus, W.W. & Groot Koerkamp, P.W.G., 2021. "Good animal welfare by design: An approach to incorporate animal capacities in engineering design," Agricultural Systems, Elsevier, vol. 191(C).
    17. Cocoradă, Elena & Maican, Cătălin Ioan & Cazan, Ana-Maria & Maican, Maria Anca, 2018. "Assessing the smartphone addiction risk and its associations with personality traits among adolescents," Children and Youth Services Review, Elsevier, vol. 93(C), pages 345-354.
    18. Óscar Chiva-Bartoll & Honorato Morente-Oria & Francisco Tomás González-Fernández & Pedro Jesús Ruiz-Montero, 2020. "Anxiety and Bodily Pain in Older Women Participants in a Physical Education Program. A Multiple Moderated Mediation Analysis," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    19. George Momanyi & Maureen Adoyo & Eunice Mwangi & Dennis Mokua, 2017. "Strengthening Strategic Reward Framework in Health Systems: A Survey of Narok County, Kenya," Global Journal of Health Science, Canadian Center of Science and Education, vol. 9(1), pages 181-181, January.
    20. Alfano, Vincenzo & Cicatiello, Lorenzo & Gaeta, Giuseppe Lucio & Pinto, Mauro, 2019. "The gender wage gap among PhD holders: an empirical examination based on Italian data," GLO Discussion Paper Series 393, Global Labor Organization (GLO).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:9:p:231-:d:630294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.